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Are SNRs fundamentally the same across galaxies?

Cumulative Luminosity Function of NGC 6946

Lacey & Duric (2001)

The brightest SNR in M33 is -10 times less luminous than the
brightest SNR in NGC 6946.




Radio SNRs in Other Galaxies
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SN Rs in 19 Nearby Galaxies
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Cumulative Luminosity Functions
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Composite SNR Luminosity Function
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Arp 220:

outlier?

LF scaling
factor —»
(assuming

B=-2.13)

Approximately
linear relation:

_ (83ii§) SFRO.SS:J:0.0S




Therefore, the SNR LF can be described as:

dN

_ F 0.88 L—2.07
L~ 83 SFRU™ LT

We can rewrite dN/dL as:

dN  dN (dLM>1

dL14 N W dt

dN/dt is the production rate of SNRs, o« SFR.
dL/dt describes the luminosity evolution of SNRs.




 Radio SNRs are
in the adiabatic
phase.

* In the adiabatic
phase, the CR
energy does not
depend on time or

ISM density.
Ecr/Egn =~

constant.

Some Approximations
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From Berezhko & Volk (2004)




Therefore, it is the magnetic field that determines dL/dt.

Standard prescription for magnetic field amplification:

B* /(8m) = 0.01 pg {‘::

Making these simplifications, we find an expression for the
time evolution of synchrotron luminosity:

H-l': —0.9
L, Eh-."-., Po 1

And for the luminosity function:

P=-2.1
< A very good fit

Z__ to the datal




The L.

--SFR relation

Just a statistical
sampling eftect?

Best fit to data

Prediction for
statistical sampling from
Monte Carlo simulations
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Cas A on the L.__ —SFR relation
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Only a 3% probability that
agalaxywith L . =~ L. 4
has a SFR > 2 My/year




Conclusions

* The SNR LF is remarkably similar across galaxies. It is

consistent with a power law of constant index and scaling « SFR.

* The SNR LF is well fit with models of diftusive shock
acceleration + magnetic field amplification, given a few

simplifying assumptions.

* GGalaxies with higher SFRs host more luminous SNRs; this can

be completely explained by statistical sampling effects.

* The luminosity of Cas A implies that current estimates of the
Milky Way SFR may be too high.




Model the SNR LFs as power laws

The four “best” galaxies

(N¢ng>20) all have similar
best-fit f3:
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Is there a dependence on ISM density?

A < SFR pg”®

Line marks theoretical
prediction:

A/SFR o« p _©3
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There are claims that B*> « p_ vJ3 instead of « p_v2
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! Young SNRs
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From Vink (2004).




