Evidence of a Curved Cosmic-Ray Electron Spectrum in the Remnant SN 1006

Glenn E. Allen, (MIT/MKI), John C. Houck (MIT/MKI), and Steven J. Sturmer (USRA, NASA/GSFC)

Abstract

A joint spectral analysis of Chandra X-ray data and HIRFL radio data indicates that the high-frequency cutoff of the electron energy spectrum of SN 1006 is consistent with a curved electron spectrum for high energies, beyond the radio band. The results of the joint spectral analysis and the expected radio flux densities of SN 1006 are consistent with a possible detection of a curved electron spectrum, which is a result of nonthermal electrons undergoing a change in energy. The estimated spectral curvature is consistent with the expected slope of the linear relationship between the index and curvature parameters.

Table 1. Best-Fit Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index (Γ)</td>
<td>3.0 ± 0.1</td>
</tr>
<tr>
<td>Curvature (δ)</td>
<td>1.5 ± 0.3</td>
</tr>
</tbody>
</table>

Assumptions

1. The electron density is described by a function of the form

\[\rho = \frac{\rho_0}{(1 + \alpha \nu^2)^{\delta}} \]

where \(\rho_0 \) is the electron density, \(\nu_0 \) is the lowest frequency, \(\alpha \) is the spectral index used by Ellison et al. (2000), and \(\delta \) is the observed spectral curvature.

2. The model is a linear function of the logarithm of the momentum. This enables us to show, for the first time, that the electron spectral index is a linear function of the logarithm of the momentum.

3. The model is a linear function of the logarithm of the momentum. This enables us to show, for the first time, that the electron spectral index is a linear function of the logarithm of the momentum.

4. The model is a linear function of the logarithm of the momentum. This enables us to show, for the first time, that the electron spectral index is a linear function of the logarithm of the momentum.

Conclusions

1. We performed a joint spectral analysis of Chandra X-ray and HIRFL radio data for SN 1006, which indicates that the electron spectral index is consistent with a possible detection of a curved electron spectrum.

References