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The life cycle of dust In
the universe

Dust has an
Important role in
the processes that
drive the evolution
of the Interstellar
Medium (ISM)




What kind of dust do
we find In the ISM?

What is the chemical composition of interstellar
dust in the ISM?

Major dust forming elements are: C,N,O, Mg, Si and Fe
(and possibly S)

 Silicates
* Hydrogenated Amorphous Carbon

 Interstellar ices
(CO, H,0, NH;5, CH,, CO, etc.)

* Graphite
e Sulfide minerals: FeS, FeS, MnS (?)

Silcate dust grain



Observing Dust

Dust has been extensively studied between wavelength
ranges: radio to far UV

Open questions:

e Chemical composition of dust unclear:
Where is the iron? 90% depleted! Might be in silicates.
Also large uncertainties for: O, S, and C

 Structure of dust: How is dust produced and
destroyed? What is the ratio of amorphous and
crystalline dust?

X-rays can provide an answer!



the stud;v/ of interstellar
dust

 X-rays are sensitive to a wide range of
column densities; makes it possible to
analyze dust content in various regions



the studg/ of interstellar
dust
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the stud;v/ of interstellar
dust

* X-rays are sensitive to a wide range of column
densities; makes it possible to analyze dust
content in various regions

* Measuring non blended absorption features
in the soft X-rays of O, Mg, Si and Fe



the studg/ of interstellar
dust

X-rays are sensitive to a wide range of column
densities; makes it possible to analyze dust
content in various regions

Measuring non blended absorption features in the
soft X-rays of O, Mg, Si and Fe

Absorption of both gas and dust can be
measured simultaneously



structures (XAFS) to characterize
ID
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Models:
Filling the gaps

Few lab measurements available of X-ray
edges interesting for astronomy

We need to expand the databas¢

The DUSTLAB project & =

(Costantini, De Vries 2013)

* Collect relevant dust samples
(e.q. silicates and sulfates)

« Measure relevant edges (o, Fe,
Mg, Si, S)

Imblement into fittina X-rav



Laboratory data

LUCIA Electron Microscope Utrecht (EMU)

Mg K at 1.3 keV Madrid (TEM)
Si K at 1.84 keV O Kat 0.543 keV

Fe L at 0.7 keV

SOLEIL
SYNCHROTRON

DUBBLE
Fe Kat 7.11



Intensity (arbitrary units)

Absorptlon profiles: Si K-edge

T T T T T T T, \ ‘ T o ‘ T T T T T 1T T ‘ T T T T T 1T 77
: 5 Sample 1 ]
i Sample 2 1
- : Sample 3 1
- Sample 4 -
i : Sample 5 1
i 3 Sample 6 il
I g Sample 7 oo ]
oL §0.3O B
'] — ]
O [\ \ | ‘ Ll ‘ T ‘ T
6.8 6.7 6.6 6.5

wavelength (A)

1. Olivine
(Mg, 56F€4.4510,6:0,)

2. Pyroxene (amorphous)
(Mg, ,Fe 4, SIiO;)

3. Pyroxene
(Mg, 4Fe ,, SiO;

4. Enstatite

(MgSiO;, )

5. Pyroxene
(amorphous)

(Mg o¢Fe 4510;)

6. Pyroxene
(Mg o¢Fe .4510;)

7. Hyperstene
(Mg, 50,F€0.49551,06)

Zeegers, Costantini et al 2016 (submitted)
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Test case: SiI K-edge of X-ray
blnary GX 5-1
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crystalline vs amorphous
dust
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crystalline dust

We find >70% of
crystalline dust
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Scattering feature
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Large particles along
the line of sight?
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Large particles along
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binaries
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Interstellar Dust?
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The Next Decade...

Chandra has a huge potential in solving the
major open question about interstellar dust.

New lab measurements of the X-ray edges will
play an essential part!
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