The "missing seed" problem for massive black holes at high redshift

Kevin Schawinski Institute for Astronomy

TH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

@kevinschawinski

ETH black hole group Grüp Bœgg Negar Politecnic da Zürig

adapted from Trakhtenbrot & Netzer 2012

Trakhtenbrot+16

Current observational constraints on high-z AGN

I. Wide-area quasar surveys SDSS/deep Jiang+09 CFHQS Willott+10 SuprimeCam Kashikawa+15

II. Deep fields
CDFS stacking
CDFS individual sources Weigel+15

I. Wide area quasar surveys

Kashikawa+15 (latest compilation)

II. Deep fields

Chandra X-ray stacking of z=[6,7,8] dropout galaxies

Treister+13

II. Deep fields

Chandra X-ray stacking of z=[6,7,8] dropout galaxies

Table 1. Stacking Results						
Redshift	B06	Sa B11	mple F12	Combined	X-ray Lum ^a [erg s ⁻¹]	BH Mass ^a [M _☉ Mpc ⁻³]
Soft Band $(0.5-2 \text{ keV})$						
$z\sim 6$ $z\sim 7$ $z\sim 8$	-3.4±6.2 	0.7 ± 1.4 1.6 ± 1.7	-3.6±4.7 -0.6±2.5 0.7±1.9	-4.0 ± 6.5 -0.4 ± 2.6 1.9 ± 2.1	$<3.1 \times 10^{41}$ $<6.8 \times 10^{41}$ $<1.5 \times 10^{42}$	<996 <623 <628
Hard Band (2-8 keV)						
$z \sim 6$ $z \sim 7$ $z \sim 8$	-6.3±9.1 	 0.2±2.4 -4.7±2.1	-3.3±6.7 1.8±4.1 -0.4±2.6	-9.1 ± 9.4 1.5 ± 4.1 -1.8 ± 2.8	$\begin{array}{c} < 1.6 \times 10^{42} \\ < 5.3 \times 10^{42} \\ < 9.8 \times 10^{42} \end{array}$	$<\!$

^aFor the combined sample

Treister+13

II. Deep fields

Counterparts of Chandra sources: no z>5 candidates in 4 Msec data

Weigel+15, c.f. Giallongo+15

is there a contradiction between quasar surveys and deep fields?

AGN X-ray luminosity function

limits from deep fields: Treister+13 Weigel+15

limits from deep fields: Treister+13 Weigel+15

comparison to quasar surveys: Jiang+09 Willott+10 Kashikawa+15

the Chandra-COSMOS "X-ray Visionary Project"

Take away messages: what *Chandra* can do in the Next Decade

apparent tension between quasar surveys and deep fields can be resolved if seed formation is *highly* inefficient

exploring the AGN LF at 4 < z < 10 is **difficult, but possible** with *Chandra* — provided the right survey strategy is used.

reading material: Treister+13, Weigel+15, Trakhtenbrot+16 stay tuned for: Schawinski+16