

CENTER FOR ASTROPHYSICS HARVARD & SMITHSONIAN Gradand LOCKHEED MARTIN

Measuring Inflows, Outflows, and Rotation in the Hot Circumgalactic Medium of Nearby Simulated Disc Galaxies with High-Resolution X-ray Spectroscopy John ZuHone

Center for Astrophysics | Harvard & Smithsonian

with Gerrit Schellenberger, Anna Ogorzalek, Ben Oppenheimer, Jonathan Stern, Ákos Bogdán, Nhut Truong, and many others...

The Circumgalactic Medium

The circumgalactic medium (CGM) is the multiphase gas medium filling the halos of galaxies

INE EMISSION MAPPER

- The CGM is the repository of gas falling into the halo from the intergalactic medium and expelled from the galaxy via feedback from AGN and stars
- For galaxies with Milky Way mass and above, the dominant phase of the CGM is hot and emits in X-rays

Velocities in the Hot CGM

Outflows

- Feedback from AGNs, supernovae, starbursts
- Inflows
 - Cosmological accretion
 - "hot" or "cold" mode?
- Rotation
 - How much angular momentum does the hot CGM have?
- Turbulence

Figure credit: Aaron M. Geller, from Faucher-Giguère & Oh (2023)

High Spectral Resolution is Necessary!

- Can't measure velocities or even see the hot CGM (except the innermost parts in massive nearby galaxies) at all without it
- The MW hot CGM emits at the same atomic transitions (O VII, O VIII, Fe XVII, etc.) and is much brighter
- High spectral resolution allows one to distinguish the emission lines between source and foreground if the source is cosmologically redshifted
- Different lines reveal different phases, kinematics

LEM Observatory Design

- The Line Emission Mapper (LEM) is an X-ray integral field unit (IFU) microcalorimeter
- Effective area ~4-6x Chandra/ACIS (launch) at 1 keV
- PSF of ~10"
- Field of view of 30', main outer array with ~2 eV spectral resolution
- Inner array of 7' with ~1 eV spectral resolution

TNG50 Disk Galaxies Sample

- Used 6 galaxies from the Illustris TNG50-1 simulation, part of the MW/M31-like sample in Pillepich et al. 2021
- These galaxies all exhibit cavities like the Fermi/eROSITA bubbles seen in our own galaxy
- Used the pyXSIM code to simulate the X-ray emission from the galaxies, and the SOXS code to pass the emission through an instrument model for LEM

ZuHone et al. (2023), arXiv:2307.01269

CENTER F

ASTROPHYSIC

Gas Licas - zwy [log erg s⁻¹ kpc⁻²]

Maps: Inclined 45°

INE EMISSION MAPPER

- In most of these galaxies, there is a simple velocity structure of fast outflows near the vertical axis, slow inflows near the plane, and rotation in the inner ~50 kpc
- Other galaxies—more complicated

ZuHone et al. (2023), arXiv:2307.01269

CENTER I

ASTROPHYSIC

Face-On

Edge-On

Edge-On–Rotation Curve!

LINE EMISSION MAPPER

13

Face-On—A Bit More Complicated...

- Face-on, we are looking down into the outflows, seeing the winds coming and going, as well as intervening cooler gas
- This requires a fit with multiple thermal emission models, with different temperatures, line shifts, line widths
- Hotter gas has larger velocity dispersion (as expected)

LINE EMISSION MAPPER

- Disk galaxies with mass of the Milky Way and above will be surrounded by a hot, X-ray emitting circumgalactic medium
- Many such galaxies in the TNG50 simulation exhibit a structure where slowly inflowing gas at large radii transitions into rotation near the galactic disk, with AGN-driven fast outflows on either side of the disk
- This velocity structure can be observed by the wide-field microcalorimeter aboard the Line Emission Mapper probe
- Observing these galaxies edge-on reveals the rotation curve
- Observing these galaxies face-on peers through complex multiphase flows that will require careful modeling
- Observing at inclined angles produces interesting combinations of rotation and outflows in velocity maps