Ultra-fast outflow responses in highly accreting supermassive black holes

Yerong Xu (INAF-IASF Palermo, UNIPA)

Collaboration: C. Pinto, J. Ebrero, S. Bianchi, E. Kara, J. Garcia, P. Kosec, D. Rogantini, M. Guainazzi, D. Barret 2<sup>nd</sup> Aug 2023 @ HRXS workshop Supported by ESA archival research visitor programme





## Ultra-fast outflows (UFO) in AGN



The highly-ionized and extremely fast gas carries up a huge amount of kinetic energy, which might be sufficient ( $L_w > 0.5\% L_{Edd}$ ) to affect the host galaxy.

UFO detected with strongly blueshifted absorption features (along our LOS)

## UFO launching mechanism

- Radiation-driven outflow
  - Winds accelerated by the strong radiation pressure
  - Naturally expected in highly accreting systems

- Magnetically-driven outflow
  - Wind launched along magnetic field lines



500

## Evidence for radiation-driven outflow in high-accretion AGN



- The EW and flux of Fe XXV/XXVI absorption decrease with X-ray flux
- $\rightarrow$  Over-ionized by strong X-ray luminosity



• The blueshift of UFO absorption lines increases with the flux

#### Evidence for radiation-driven outflow in high-accretion AGN



• UFO is accelerated by strong radiation field in high-accretion AGN

## The peculiar case of 1H 0707-495 (Xu+2021b)



#### Possible Explanations:

- 1. MHD driven wind (Fukumura+2018) predicts a decreasing velocity
- 2. Over-ionized gas experiences lower radiation driven force.
- 3. Super Eddington radiation  $(L_{bol}/L_{Edd} \sim 0.7 20)$  extends the launch radius outwards.



#### Sample Selection Criteria for archival XMM-Newton/RGS datasets

• No heavy obscuration (Type I AGN):  $N_H < 10^{22} cm^2$ 

• Enough counts (long exposure or bright enough): > 50,000 Counts in RGS spectrum

• Strong detection significance of UFO:  $> 3\sigma$ , i. e.,  $\Delta C - stat > 16$ 

# Benchmark: UFO response in Mrk 1044 (Xu+2023)



Gaussian line scan over the flux-resolved spectra

# UFO response in the sample (Xu in prep.)



## Report undiscovered UFOs in two AGN (RE J1034+396 and PG 1244+026)

UFOs in our sample are either accelerated by the radiation pressure or unchanged probably due to the response time delay of the momentum to the source variation.

# UFO response in the sample (Xu in prep.)



In general, the slope of the velocity (i.e. acceleration) decreases with the Eddington ratio



- $\rightarrow$ The UFO acceleration could be reduced
- 1) by the extended launching radius in highly accreting AGN
- 2) or by the over-ionization of the plasma (lower push)

## Future missions: XRISM, Athena and LEM / Arcus



Distinguish the driving mechanism through the line profile

LEM simulation for the UFO response in 1H 1934-063 with 10 ks exposure time



Enable on-time spectral modelling without the need for smoothing the wind features

# Conclusion

UFOs in high-accretion AGN are likely driven by radiation pressure, but the acceleration may decrease with the increasing accretion rate.

