

Advancing X-ray Background Modeling for Enhanced Data Analysis

Taweewat Somboonpanyakul

Postdoctoral Researcher at Stanford University

with Steve Allen, Adam Mantz, Anthony Flores, Justin Myles, Glenn Morris

Outline

- Why do we care about X-ray background?
- X-ray Background Components
- What has been done so far?
- What are we doing?
- Benefits of the new method
- Lessons learned from this

Chandra X-ray Telescope

Why do we care about X-ray background?

 It is especially important for us since our focus is on faint/extended sources where the X-ray background is comparable to the science signal.

What has been done so far?

If there are nearby regions which are free from the source emission

- We use those on-chip regions as background for subtraction
- Issue:
 - A lot of the time, we do not have enough coverage for these regions, especially for nearby or extended sources (i.e. ICM from galaxy clusters)

What has been done so far?

If there is not any regions with no source emission,

- We could use blank-sky background (combined sky background with point sources removed) or stowed background (out of focal position of the telescope) for subtraction.
- Issue:
 - <u>Blank-sky</u>: Sky background is an average in all directions, including foreground and unresolved AGN components
 - <u>Stowed</u>: Only include particle-induced events

Challenges with Previous Methods:

- Limited Statistics: Short exposure time on the chip and smaller regions in the blank sky result in small statistics
- Inaccurate Components: Difficulty in correctly identifying all components, including the soft foreground and undetected AGN population
- Loss of Resolution: The use of modified cstat with background subtraction requires at least 1 count per bin, leading to a reduction in resolution.

X-ray Background Modeling

- Model all the X-ray background components based on the information that we have, including

Foreground

ROSAT soft X-ray background

Chandra Deep Field South

Particle-induced

ROSAT Image

Note: XSPEC Model for foreground component: apec + phabs*(apec + apec)

Unresolved AGN normalization map

XLF - (Miyaji+2015)

The spectra are modeled with combination of instrumental lines (Al, Si, Ni, and Au) and continuum components.

Spectral Analysis of Off-cluster Regions

- Combining these three components to create comprehensive background models for spectral analyses.
- We test the model with off-cluster regions (regions without any cluster signals) to evaluate its performance.

QPB: particle-induced, SFG: soft foreground, AGN: unresolved pt sources, Total: combined

macs0159.8-0849 (z=0.404)

macs0011.7-1523 (z=0.378)

Conclusion

- This method had proven to be surprisingly effective in studying extended objects at large radii or faint objects.
- Background modeling is important in future X-ray missions, as it plays a critical role in obtaining reliable results.
- This approach is not limited to *Chandra*; other missions like *XRISM*, with even smaller field of view (FOV), will require the use of this method to an even greater extent.

ACIS-I photon image of the stowed dataset

