The Galactic X-ray Excess Problem is **Not** Solved

Tony Rodríguez (Caltech) NSF GRFP Fellow | Ford Foundation Fellow

*Chandra* HRXS Workshop MIT, 3 August 2023

#### Galactic Ridge Soft X-rays

- Galactic Ridge: I < 40 deg, b < 4 deg
  - Discovered by HEAO-1 in 1982.



## Galactic Ridge Hard X-rays

- Galactic Ridge: I < 40 deg, b < 4 deg
  - Discovered by HEAO-1 in 1982.
  - *INTEGRAL* hard X-rays in 2007.



#### Krivonos 2009

#### Galactic Ridge Resolved

- Galactic Ridge: I < 40 deg, b < 4 deg
  - Discovered by HEAO-1 in 1982.
  - *INTEGRAL* hard X-rays in 2007.
  - *Chandra* resolved it into discrete sources in 2009.

|                                        |                                         | 0 0 0                                                              | 8:                                    |             |
|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------|---------------------------------------|-------------|
|                                        | 000                                     | 0000<br>0000<br>000                                                | 0<br>0<br>-29:32                      |             |
| 00                                     |                                         | 0000<br>0000                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00          |
|                                        | 00000                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00          |
|                                        | ଦ୍ରୁ ତିବିତ<br>ତ୍ରୁତ୍ର ତି                | 000                                                                | 0.00                                  | 0000        |
|                                        |                                         |                                                                    |                                       | o<br>e      |
|                                        | 00 0 00 00 00 00 00 00 00 00 00 00 00 0 | 000 00 0<br>000 00 0                                               |                                       | 000         |
| :51:40.0 0 0 0                         | 0 017:51                                | 30.0 00 00 00 00 00 00 00 00 00 00 00 00                           | 0 0 17:51<br>0 0 0<br>0 0             | 20.0<br>° ° |
| ° 8° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | °°°°                                    |                                                                    | min 6 000                             | 0           |
| 0                                      | 00000000000000000000000000000000000000  |                                                                    | 73 00 40 0° 0<br>0 60<br>0 60         |             |
|                                        | 0<br>0                                  | 0 0<br>0 0                                                         | 37:00.0                               |             |

**Revnivstev 2009** 

#### Galactic Center Resolved

- Galactic Ridge: I < 40 deg, b < 4 deg
  - Discovered by HEAO-1 in 1982.
  - INTEGRAL hard X-rays in 2007.
  - *Chandra* resolved it into discrete sources in 2009.
- Galactic Center: Inner few pc
  - NuSTAR observed a distinct increase in hard X-rays in the nuclear star cluster (NSC) in 2015.



Perez 2015

# Solution: Cataclysmic Variables

• Non-magnetic CVs (64%)

• Intermediate Polars (7%)





• Polars (29%)  $kT_{\rm shock, \ bremss} \approx \frac{3}{8} \frac{GM_{\rm WD} \mu m_H}{R_{\rm WD}}$ 



# Solution: Cataclysmic Variables

• Non-magnetic CVs (64%)

• Intermediate Polars (7%)







• Polars (29%)

$$kT_{\rm shock,\ bremss} \approx \frac{3}{8} \frac{GM_{\rm WD} \mu m_H}{R_{\rm WD}}$$

## Broadband Fit

 Thermal Bremms: Magnetic CVs with M<sub>WD</sub> = 0.5M<sub>Sun</sub>



# Spectral Fit

 Assuming all subtypes contribute:



#### The Problem is Not Solved

| Region          | Modeling         | Dominant CV class  | WD mass                                        | Ref.             |
|-----------------|------------------|--------------------|------------------------------------------------|------------------|
| Galactic Ridge  | Continuum        | IP                 | $0.5M\odot$                                    | [2] Krivonos+ 07 |
| Galactic Ridge  | Fe Line Emission | Non-magnetic       | _                                              | [5] Xu+ 16       |
| Galactic Center | Continuum        | IP                 | $0.9M\odot$                                    | [3] Perez+ 15    |
| Galactic Center | Fe Line Emission | Non-magnetic or IP | $1.0 - 1.25 M \odot$ or<br>$0.6 - 0.8 M \odot$ | [6] Xu+ 19       |

#### The Problem is Not Solved



#### The Problem is Not Solved



# What Next?

- More X-ray discoveries of magnetic CVs to reveal the diversity of the population.
- 2. More *Chandra* HETG spectra of polars.

