Understanding the environment of Cen X-3 with RGS

José Joaquín Rodes Roca

UNIVERSITY of ALICANTE University Institute of Physics Applied to Sciences and Technologies Dept. of Physics, System Engineering and Sign Theory SRON (Netherlands Institute for Space Research)

Jelle Kaastra, Jelle de Plaa, Missagh Mehdipour, Ton Raasen, José Miguel Torrejón, Graciela Sanjurjo-Ferrín

"High Resolution X-ray Spectroscopy" A Chandra Workshop, August 1-3, 2023

Contents

XMM-Newton observations

Orbital phase-averaged spectra

- Results for the Obs ID 0111010101
- Results for the Obs ID 0400550201

Contents

XMM-Newton observations

Results for the Obs ID 0400550201

Orbital phase-averaged spectra

:ant licante

Introduction

The X-ray binary pulsar Cen X-3

Image: Dany Page picture of the Cen X-3 system

Properties of the system

- An MK type O 6-8 III counterpart (Hutchings et al. 1979)
- $M_{\mathrm{opt}} \sim 20.5 \pm 0.7 \, M_{\odot}$ (Ash et al. 1999) and $R_{\mathrm{opt}} = 12.1 \pm 0.5 \, R_{\odot}$ (Naik et al. 2011)
- high X-ray luminosity
- accretion disc fed by Roche-lobe overflow (Tjemkes et al. 1986)

José Joaquín Rodes Roca RGS

Orbital phase-averaged spectra

Conclusions

Introduction

Properties of the system

- A neutron star with $M_{\rm NS}=1.34^{+0.16}_{-0.14}~M_{\odot}$ (van der Meer et al. 2007) and $P_{\rm NS}=4.82~{\rm S}$ (van der Meer et al. 2007)
- Magnetic field $B = (2.4 - 3.0) \times 10^{12} \text{ G}$ (Naik et al. 2011)

Image: http://134.160.243.77/pubdata/v3/J1121-606/index.html

Orbital phase-averaged spectra

Conclusions

Introduction

Properties of the system

- Orbital period $P_{\rm orb} \sim 2.087$ d (Falanga et al. 2015, Sanjurjo-Ferrín et al. 2021)
- eccentricity *e* < 0.0016 (Bildsten et al. 1997)
- orbit inclination $i = 79^{\circ} \pm 3^{\circ}$ (Sanjurjo-Ferrín et al. 2021)
- distance: $d \sim 8 \text{ kpc}$ (Krzeminski 1974) – $d_{\text{Gaia}} = 6.8^{+0.6}_{-0.5} \text{ kpc}$ (Bailer-Jones et al. 2021, Torregrosa et al. 2022)

Image: http://134.160.243.77/pubdata/v3/J1121-606/index.html

Orbital phase-averaged spectra

Contents

XMM-Newton observations

Results for the Obs ID 0400550201

Orbital phase-averaged spectra

Conclusions

XMM-Newton/RGS observations

Both observations have been studied previously by Devasia et al. (2010), Naik & Paul (2012), Aftab, Paul & Kretschmar (2019), Sanjurjo-Ferrín et al. (2021).

Reflection Grating Spectrometer

Analysis is focused on the high resolution spectra provided by the RGS instrument.

Observation data

ID	Instrument	Mode	Duration (s)
0111010101	RGS1	Spec HER + SES	65 922
0111010101	RGS2	Spec HER + SES	63 569
0400550201	RGS1	Spec HER + SES	80370
0400550201	RGS2	Spec HER + SES	80370

Table: XMM-Newton observation log.

Contents

XMM-Newton observations

Orbital phase-averaged spectra

- Results for the Obs ID 0111010101
- Results for the Obs ID 0400550201

Spectral analysis

The fitting process with SPEX

- Description of the X-ray continuum by using the orbital-phase averaged spectrum.
- Fixing the continuum parameters and fitting the abundances.
- Checking different kind of absorbers: absm, slab, warm, xabs, pion.
- And trying also other continuum components: bb, comt, rrc, pion.
- $\Rightarrow\,$ Defining our best fit model and aplying it to the time resolved spectroscopy.
 - 0111010101 \Rightarrow (*cie* + *cie*) \times *hot*_{intrinsic} \times *hot*_{ism}, χ^2 /*dof* = 516/391
 - 0400550201 \Rightarrow (mbb + cie) \times xabs1 \times slab \times xabs2 \times hot_{ism},
 - $\chi^2/dof = 1136/640$

Netherlands

Fit model parameters: eclipse spectrum

Table: Spectral fit to the orbital phase averaged spectrum.

Component	Parameter	0111010101		
Hat	$N_H (10^{26} \text{ m}^{-2})$	0.8±0.3		
HOlintrinsic	<i>k T</i> (eV)	$41.3^{+2.4}_{-1.9}$		
	ne nX V (10 ⁶⁴ m ⁻³)	$2.9^{+0.6}_{-0.5}$		
Cie1	k T (keV)	$2.1^{+0.9}_{-0.4}$		
	Flux $(10^{-15} \text{ W m}^{-2})$	2.2±0.4		
	Unabs. Flux $(10^{-14} \text{ W m}^{-2})$	1.6±0.3		
Cie2	ne nX V (10 ⁶⁴ m ⁻³)	$0.8^{+2.2}_{-0.5}$		
	k T (keV)	$0.26^{+0.07}_{-0.08}$		
	Abundance Ne	$1.6^{+0.4}_{-0.3}$		
	Abundance Mg	$0.8^{+0.5}_{-0.2}$		
	Abundance Fe	$0.14^{+0.06}_{-0.05}$		
	Flux $(10^{-16} \text{ W m}^{-2})$	$2.0^{+2.4}_{-1.5}$		
-	Unabs. Flux $(10^{-14} \text{ W m}^{-2})$	3 ⁺⁸ -2		
1	χ^2/dof	516/391	sitat d'Alac	
stitute for Space Research Universidad de Alio				
			< ≣ > ≣	

Orbital phase-averaged spectra

Conclusions

XMM-Newton Obs ID 0111010101: RGS spectrum

José Joaquín Rodes Roca

Orbital phase-averaged spectra

Conclusions

XMM-Newton Obs ID 0111010101: RGS spectrum

Results

The eclipse case

- Wavelength range reduced to (7–15) Å.
- This observation cover the orbital phase period $\phi = (0.00 0.37)$.
- Emission lines of Ne x at 12.134 Å, Fe xvIII at 10.627 Å, Ne x at 10.24 Å, Mg xI at 9.232 Å, Mg xII at 8.421 Å, Si v at 7.126 Å.
- If present, He-like emission lines of Ne IX at 13.447 Å and Mg XI at 9.232 Å were too blended and could not be resolved clearly.
- Simultaneously, *EPIC/pn* detected the presence of Fe I-XIV at 6.4 keV, Fe XXV at 6.7 keV and Fe XXVI at 6.97 keV (Naik & Paul 2012) $\implies \xi \sim 10^{3.4} \text{ erg cm s}^{-1}$.
- Each CIE component could explain two different circumstellar X- ray emission: scatter in the stellar wind and from matter in the surroundings of the neutron star.

Introduction

5

RON

XMM-Newton observations

Orbital phase-averaged spectra

Eclipse case

Netherl

Fit model parameters: out-of-eclipse spectrum

Table: Spectral fit to the orbital phase averaged spectrum.

Component		Parameter	0400550201	
	Vaha	<i>N_H</i> (10 ²⁶ m ⁻²)	2^{+7}_{-1}	
Add Sintrinsi	AddS intrinsic1	$\log \xi \ (10^{-9} \text{ W m})$	$3.8^{+0.1}_{-0.4}$	
		<i>N_H</i> (10 ²⁶ m ⁻²)	8.7 [±] 0.3	
	Xabs _{intrinsic2}	$\log \xi \ (10^{-9} \text{ W m})$	$1.41^{+0.05}_{-0.03}$	
		Covering fraction	$0.899 {\pm} 0.006$	
		Norm (10 ²⁶ m ^{0.5})	$0.80\substack{+0.05\\-0.03}$	
	Modified BB	t (keV)	$0.598^{+0.012}_{-0.011}$	
	Mounieu DD	Flux $(10^{-13} \text{ W m}^{-2})$	$1.11^{+0.07}_{-0.04}$	
_		Unabs. Flux $(10^{-12} \text{ W m}^{-2})$	$4.7^{+0.3}_{-0.2}$	
		ne nX V (10 ⁶⁴ m ⁻³)	56^{+5}_{-6}	
	Cie	kT (keV)	1.07 ± 0.03	
	01e	Flux $(10^{-15} \text{ W m}^{-2})$	$8.8^{+0.8}_{-0.9}$	
		Unabs. Flux $(10^{-13} \text{ W m}^{-2})$	$5.3^{+0.5}_{-0.6}$	
)N	Slab	$\log Mg \propto (m^{-2})$	$20.36^{+0.15}_{-0.16}$	itat d'Alacant
nds Instit	ute for Space Research	χ^2/dof	1136/640	idad de Alican
-				ो≣। È • ० ०।

José Joaquín Rodes Roca

Orbital phase-averaged spectra

Conclusions

XMM-Newton Obs ID 0400550201: RGS spectrum

José Joaquín Rodes Roca

Orbital phase-averaged spectra

Conclusions

XMM-Newton Obs ID 0400550201: RGS spectrum

José Joaquín Rodes Roca

Orbital phase-averaged spectra

Conclusions

XMM-Newton Obs ID 0400550201: RGS spectrum

José Joaquín Rodes Roca

Orbital phase-averaged spectra

Conclusions

XMM-Newton Obs ID 0400550201: RGS spectrum

José Joaquín Rodes Roca 👘 🛛 🦷 R

Results

The out-of-eclipse case

- Wavelength range reduced to (7-20) Å.
- This observation cover the orbital phase period $\phi = (0.36 0.80)$.
- Emission lines present in the out-of-eclipse spectrum ⇒ difficult to distinguish of the X-ray continuum.
- Simultaneously, *EPIC/pn* detected the presence of Fe I-XIV at 6.4 keV, AND ALSO Fe XXV at 6.7 keV and Fe XXVI at 6.97 keV, BUT with lower EW than in eclipse $\implies \xi \sim 10^{3.4}$ erg cm s⁻¹.
- Identified an absorption feature Mg xI at 9.378 Å.
- It seems that the (un)resolved triplet of Ne XI is present and the forbidden line is nearly suppressed for this ion.

Orbital phase-averaged spectra

Conclusions

Results

The He-like triplet of Ne

- $\mathcal{R}_{obs} = f/i = 0.3^{+0.4}_{-0.3} \Longrightarrow$ UV photospheric field seems to be important at the line production site (Porquet & Dubau 2000)
- Electron density should be $\gtrsim 10^{12} \text{ cm}^{-3}$ supported by $\mathcal{G}_{obs} = (f + i)/r = 2.5 \pm 2.4$ (Porquet & Dubau 2000)
- May be a hybrid plasma where the effect collisional plasma should be present

 \leq

XMM-Newton observations

Orbital phase-averaged spectra

E

Out-of-eclipse case

Contents

XMM-Newton observations

- Orbital phase-averaged spectra
- Results for the Obs ID 0111010101
- Results for the Obs ID 0400550201

Conclusions

Cen X-3 as seen by RGS

Cen X-3 was observed with the *XMM-Newton* satellite covering two different orbital ranges. A more complex model is needed to describe the out-of-eclipse spectrum compared with the two temperature CIE absorbed model for the eclipse-egress spectrum.

- We detected emission lines from hydrogenic/helium ions of Ne and Mg.
- Different ionization states in a hybrid plasma.
- The continuum spectra are reasonable fitted with SPEX models in and out-of-eclipse.
- BUT, some limitations of the best fitting models such as RGS absorption lines blend and not unique solutions.

Acknowledgements

Acknowledgements

This work was partially supported by the:

- Spanish Ministry of Education, Culture and Sport fellowship PRX17/00114
- European Union's Horizon 2020 Programme AHEAD project grant agreement n. 654215, European Union NextGenerationEU (PRTR-C17.I01) and GV (ASFAE/2022/002)

J. J. Rodes-Roca

Acknowledges the support by all the staff from SRON and thanks their collaboration and hospitality there.

Understanding the environment of Cen X-3 with RGS

José Joaquín Rodes Roca

UNIVERSITY of ALICANTE University Institute of Physics Applied to Sciences and Technologies Dept. of Physics, System Engineering and Sign Theory SRON (Netherlands Institute for Space Research)

Jelle Kaastra, Jelle de Plaa, Missagh Mehdipour, Ton Raasen, José Miguel Torrejón, Graciela Sanjurjo-Ferrín

"High Resolution X-ray Spectroscopy" A Chandra Workshop, August 1-3, 2023

