A comprehensive study of Compton shoulder in High Mass X-ray binaries with gratings onboard Chandra

PRAGATI PRADHAN **EMBRY RIDDLE AERONAUTICAL UNIVERSITY** PRESCOTT, AZ

High mass X-ray binaries to probe wind structure

SKETCHES BY VICTORIA GRINBERG

- 1	A	5	1.	
``				
2			4	
-				
-7			4	
		2	20	
3			5	
3				. •
E				
				1.0
		1		
		2	4	
		2	1	
-	-			-
-				1
v'	*			. *
1				
		1	. 4	-
12/11/2021				

Clumpy winds in HMXBs

Pradhan 2014, Bozzo 2014

What is a Compton shoulder ?

GX 301-2: Watanabe 2003

10⁰ keV Ю 10-1 Count 10^{-2}

Pic credit: Ralf Ballhausen

OAO 1657-415 (Pradhan 2019)

Why so few?

- Need high resolution spectrum: gratings, microcalorimeter
- etc

Dependent on geometry of absorbers, opacity, electron temperature, abundances

A curious case of IGR J16318-4848

A curious case of IGR J16318-4848

Highly absorbed HMXB +Very strong iron line

Small velocity of ~150 km/s (imply iron lines are formed close to the compact object – and not spread over stellar wind)

Very less fraction of Compton shoulder (< 4%: Ballhausen 2020) Chandra/HEG (250 ks)

Energy (keV)

XRISM/Resolve (40 ks)

Zooming in

Chandra (HEG+MEG) (250 ks)

Why is the Compton shoulder so low?

Dependent on geometry (Matt 2002)

Dependent on electron temp (Watanabe 2002)

Absorbers are dusty (Ballhausen 2020)

Matt 2002

Dependent on electron temperature

Watanabe 2003

Dust changes the optical depth

Self-blanketing effect: Atoms in the interior of dust grain are partially shielded by atoms on the surface, reducing the optical depth of dust grains versus gas (Fireman 1974).

Future work

More data: Cycle 25 – IGR J16320–4751. Other archival data analysis e.g., hardnessratio resolved analysis (right, plot of GX 1+4)

XRISM: Better resolving power for large photon collecting area

Long term variability of GX 1+4 with MAXI/GSM

