Maxime Parra, Pierre-Olivier Petrucci, Stefano Bianchi, Vittoria Elvezia Gianolli, Francesco Ursini, Gabriele Ponti

The current state of disk wind observations in galactic Black Hole LMXBs through X-ray absorption lines

https://arxiv.org/abs/2308.00691

Université Grenoble Alpes

High Resolution X-ray Spectroscopy 2023 | 03-08-23

^{1/11} The current context Accretion in Black Hole X-ray Binaries

ROMA TRE UNIVERSITÀ DEGLI STUDI

Low-Mass X-ray Binaries

Accretion through Roche-Lobe overflow

 \rightarrow Accretion disk

Switch between two standard states

Hard State

Soft State

^{2/11} The current context Wind detection in Black Hole X-ray Binaries

□First detections of blueshifted narrow absorption lines before 2000 (Ueda et al. 1998, Kotani et al. 2000)

material + low speed = not jet

^{2/11} The current context Wind detection in Black Hole X-ray Binaries

□First detections of blueshifted narrow absorption lines before 2000 (Ueda et al. 1998, Kotani et al. 2000)

material + low speed = not jet

^{3/11} The current context Wind detection in Black Hole X-ray Binaries

First global analysis by Ponti et al. in 2012

^{3/11} The current context Wind detection in Black Hole X-ray Binaries

First global analysis by Ponti et al. in 2012

The picture is much more complex now: Explain more exotic detections ?

Thermal and/or MHD driving to launch the gas ?

□ Build a coherent picture combining all wavelengths ?

Methodology

Main elements

Sample of sources

All the BHLMXB candidates from BlackCAT[1] + WATCHDOG[2] 68 sources + 13 more

Available spectra where we can detect lines of EW<75eV
 For XMM EPIC PN exposures -> 137 "good" spectra
 For *Chandra* HETG exposures -> 102 "good" spectra
 42 sources have at least one 'high-quality' spectrum

□A line detection procedure

[1] Corral-Santana et al. 2016 [2] Tetarenko et al. 2016

^{6/11} MethodologyLine detection

Methodology

Data reduction ~// **Continuum Fit** \checkmark **Blind Line Search** \checkmark Line fit / Upper limit computation Line significance assessment

^{7/11} Results

ROMA TRE UNIVERSITÀ DEGLI STUD

Global HLD behavior

- No detection above HR=0.8
- No standard detection below Lx/LEdd=0.01

No detection at low inclination

- No detection above HR=0.8
- No standard detection below Lx/LEdd=0.01

No detection at low inclination

No detection at low inclination ?

No detection above HR=0.8 ?

No detection at low inclination ?

- No detection above HR=0.8 ?
- No standard detection below Lx/LEdd=0.01 ?

No detection at low inclination ?

^{8/11} Results

Distributions of line parameters

^{8/11} Results

Distributions of line parameters

^{8/11} Results Distributions of line parameters

 $\mu = -200 + -60 \text{ km/s}$

$$\sigma = 360 \text{ km/s}$$

^{9/11} Results

Non detections in the favorable zone

ΛA

^{10/11} Comparisons & Conclusion The bigger picture

- Current Sample
 - 5 sources with detections, all dippers
 - Almost all soft states
 - Blueshifts of few 100km/s

^{10/11} Comparisons & Conclusion

- The bigger picture
- Current Sample
 - 5 sources with detections, all dippers
 - Almost all soft states
 - Blueshifts of few 100km/s

Literature in the X-rays

- Few other sources with detections, almost all high inclination
- Multiple detections in the hard state BUT vast majority embedded in strong reflection components
- Mostly low blueshifts except for secondary components and when mixed with reflection

^{10/11} Comparisons & Conclusion

- The bigger picture
- Current Sample
 - 5 sources with detections, all dippers
 - Almost all soft states
 - Blueshifts of few 100km/s

Literature in the X-rays

- Few other sources with detections, almost all high inclination
- Multiple detections in the hard state BUT vast majority embedded in strong reflection components
- Mostly low blueshifts except for secondary components and when mixed with reflection
- Literature in Visible & Infrared
 - Other sources, almost all high inclination
 - Visible only in hard state, IR everywhere
 - Higher blueshifts (few 1000km/s)

^{10/11} Comparisons & Conclusion

- The bigger picture
- Current Sample
 - 5 sources with detections, all dippers
 - Almost all soft states
 - Blueshifts of few 100km/s

Literature in the X-rays

- Few other sources with detections, almost all high inclination
- Multiple detections in the hard state BUT vast majority embedded in strong reflection components
- Mostly low blueshifts except for secondary components and when mixed with reflection
- Literature in Visible & Infrared
 - Other sources, almost all high inclination
 - Visible only in hard state, IR everywhere
 - Higher blueshifts (few 1000km/s)

^{11/11} Comparisons & Conclusion Current work Self similar modeling

-high resolution detections
-high resolution non-detections
-evolutions during single outbursts

NICER archive

Thanks for your attention !

Bonus <u>https://visual-line.streamlit.app/</u>

2023-06-16

Sample selection		
Telescopes		
XMM × Chandra ×	⊗ ~	
Display options:		
📀 All Objects		
 Multiple Objects 		
Single Object		
Absorption lines restriction	~	
Inclination	~	
Restrict time interval		
Detection significance treshold		
	0.997	
0.900	1.000	

HID options

Sample selecti

Show detections below significance threshold

HID colormap

Source
 Velocity shift

O Delta C

) EW ratio

Inclination

○ Time

Dates restric	tion	
1999-04-2	.5	
HID Monite	oring Parameter analysis	Tables
100	 upper limit absorption line detection above 3σ significance 	
/L _{Edd}) units		<
) (L pand in 10 ⁻²		26

	10	Lu	nin 10	sity in the	t [3-10] keV t	and in (L/L _E	_{dd}) units	
	0-5	-	0-4		0-3	0 ⁻²	0-1	10º]
4U1630-47 4U195 GR0j1655-40 AT2019 GRS1915+105 EX018 H1743-322 GRS17		20 eV	• 5 eV	Equivalent widths				 upper limit absorption line detection above 3σ significance
Hardness Ri 7+115 GX339-4 GR]17091-3622 46-031 GR]17098-362 GR]17098-362 GR]17285-292	10-1			\bigcirc^{L}	° Oq			tion
MAXIJ1348-630 MAXIJ1348-630 MAXIJ1535-571 MAXIJ1659-152 MAXIJ1803-298							•	O
6] keV bands)				\bigcirc				9
XTEJ1650-500 XTEJ1652-453 XTEJ1720-318 XTEJ1752-223	100	Ø	\bigcirc	60				

About

Bonus <u>https://visual-line.streamlit.app/</u>

2023-06-16

4U1630-47

GRO(1655-40

H1743-322

~

 $r_{\rm S} = 0.17$ $p_{\rm S} = 1.4e - 0.02$

6.7 6.8 6.9 7.0 7.1 Line energy (keV)

-

 $r_s = 0.02$ $r_s = 8.5e - 02$

H1743-322

6.7 6.8 6.9 7.0

6.6

• [...]

56×10⁻

2 4 × 10

3 × 10

€ 2 × 10°

6.6

+++

UGA

Grenoble Alpes

Université

Bonus https://visual-line.streamlit.app/

UGA

Grenoble Alpes

Université

102

101

Bonus <u>https://visual-line.streamlit.app/</u>

UGA

Grenoble Alpes

Université

2021-06-13

 \sim

~

^

A err-

506.962 140.714 142.71 147.153 140.704 215.419

93.2334 266.286

	×		Dates r 2000-03	restrictio 3–25	Dates restri 2000-03-25	Dates restr 2004	ic Da	tes restriction 2004-07-	05						2
Sample selection			1999-	-04-25	1999-04-	2003-08-	_(20	03-08-05							
Telescopes			CUD.		HID Moni	HID Mon	it HI	D Monitorin	g Parai	neter analysis Tables	About				
XMM × Chandra ×	8 ×			Moniton		16 - 1 1									
Display options:				100 12	Correlat	sity/25		Source paran	neters						
 All Objects Multiple Objects Signals Objects 			nits		100 -	m Band Inter		Observation	oaramete	rs					
Absorption lines restriction	~		L/L _{Edd}) ul	.0 ⁻¹	- 60 M3 00 40	n2]/RXTE Su	ſ	Line paramet	ers						
			ui pu		20	[ph/s/cr		Source	obsid	date	line	EW	EW	EW	blueshift
Inclination	~	+	V bar	.0-2 +	0	-20keV						🔺 main	🛦 err-	🔥 err+	🔺 main
Restrict time interval			0] ke	1		T 10-1	,o	4U1630-47	13714	2004-08-04T13:25:37	FeKa25abs	0	0	0	
Detection significance treshold			[-E] 1	.0-3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4U1630-47	13714	2004-08-04T13:25:37	FeKa26abs	11.2135	3.842	3.3277	-346.568
	0.997		in the		Correlat	keV		4U1630-47	13715	2012-01-17T04:24:48	FeKa25abs	32.0083	3.9126	3.6482	-12.402
0.900	1.000		osity	- 6	Contenat	15-2×10°		4U1630-47	13715	2012-01-17T04:24:48	FeKa26abs	56.5761	5.0119	4.8488	-340.8134
HID options			umi umi	.0 ⁻⁴	\$pu 6 × 10 ⁻¹	+A) [5-12		4U1630-47	13716	2012-01-20T23:44:57	FeKa25abs	34.4904	4.6703	3.1515	84.020
Show detections below signif	icance			1	>əv [9- €] 4×10 ⁻¹	8) 10 ⁰ -		4U1630-47	13716	2012-01-20T23:44:57	FeKa26abs	49.178	5.1341	4.1755	-278.63
threshold			1	.0-5	(01-9)) 3 × 10 ⁻¹	W/RXTE t		4U1630-47	13717	2012-01-26T13:01:41	FeKa25abs	47.159	2.0524	3.2722	483.414
HID colormap					82 55 10 2 × 10 ⁻¹	³⁴ 6 × 10 ⁻¹		4U1630-47	13717	2012-01-26T13:01:41	FeKa26abs	51.6373	2.9434	1.3012	-336.792
 Source Velocity shift 				•	Har	97 4 4 × 10 ⁻¹		4U1630-47	14441	2012-01-30T08:49:46	FeKa25abs	30.201	3.1937	3.3852	152.876
 Delta C EW ratio Inclination Time 					stinu (Lt ₆₀) units	BH 3 × 10 ⁻¹	-0°-	Download	l as CSV						

Bonus https://visual-line.streamlit.app/

UGA

Grenoble Alpes

Université

2021-06-13

 \sim

more generally, to give an

×	Dates restrictio 2000-03-25	Dates restric Dates and 2004- 2	estrictic Dates restriction 004-07 2004-07-05	2020-07-13
Sample selection	1999-04-25	2003-08-(2003-	08-05 2003-08-05	2021-06
Telescopes	HID Moni	HID Monit HID	Monitori HID Monitoring Parameter analysis Tables About	t
XMM × Chandra × 😢 v	10° 10° Correlat	Sou	visual_line is a visualisation and download tool for rce para Hole Low-Mass X-ray Binaries (BHLMXBs).	or iron-band X-ray absorption lines signatures in Blac
All Objects Multiple Objects Giocle Object	ST 80	m Band Intens	It is made to complement and give access to the re ervation overview of the sampling and X-ray evolution of the	esults of <u>Parra et al. 2023</u> , and more generally, to give he outbursts of this category of sources.
Absorption lines restriction	n (IC/FEdd) u une EW (eV)	Line	Please contact me at <u>maxime.parra@univ-grenob</u> parame features.	<u>le-alpes.fr</u> for questions, to report bugs or request
Inclination		oS	urce I want an overview of the science behind this	
Restrict time interval		2 10-1 41 2 10-1 41	I1630-47 J1630-47	,
0.997 0.900 1.000	Correlat	AW 155	General information	
HID options		2 × 10° 4U	Streamlit is a python library for web application U1630-47 the multiple widgets and re-running the entire	ns. Its interactivity is achieved by storing the status of script every time a modification is performed,
Show detections below significance threshold	10 ⁻⁵	10 - 001 - 01 - 01 - 01	 1630-47 allowing to recompute/redisplay/ all necessar 1630-47 widgets. 	ry outputs depending on the changes made to the
HID colormap Source Velocity shift	Hardness As 10-1.	4L 4L 4L 4L 4L	The monitoring and parameter analysis plots t from the MAXI website in real time, and the second	take time to compute, as the first one fetches data ond computes perturbative estimates of the
 Delta C EW ratio 		H + 10 - 1	It is worth noting that the current version of thi	ey are deactivated by default. s tool has trouble performing too many actions in a
 ○ Inclination ○ Time ○ · · · · · · · · · · · · · · · · · · ·	1 10 1 10 ⁻¹	AM S	ownloa short time. This is partially covered through integration once and something crashes, or displays in a not something crashes.	ernal failsafes, but if you modify several options at on-standard way, either resettoing an option (which

Appendices

6/11 Methodology

Line detection

Université Grenoble Alpes

Winds detection in Black Hole X-ray Binaries

The picture is much more complex now:
What about intermediate states ?
Due time for a new global analysis of the observations

Thermal and/or MHD driving to launch the material ?

Difficult to assess with current observations
 (Díaz-Trigo & Boirin 2016, Tetarenko et al. 2018,...)

Impact of the spectral shape on the thermal stability

 The wind could be a permanent component (Sánchez-Sierras & Muñoz-Darias 2020)

Modeling and stability of absorption lines

The picture is much more complex now

What about intermediate states ?
Many observations but unclear global behavior

Thermal and/or MHD driving[5][6] to launch the material ? • $T_{wind} \ll T_{acc}$

The spectral shape affects the thermal stability and ξ
 Wind always here[7] but only detectable in the right conditions ?

[6] Tetarenko et al. 2018 [7] Sánchez-Sierras

[7] Sánchez-Sierras & Muñoz-Darias 2020

Modeling and stability of absorption lines

□The wind thermal stability curves can be computed ■ Very sensitive to the SED → requires broad band data that doesn't exist

□With a bit of physically motivated[8] extrapolation...[9]

[9] Marcel et al. 2019

[1] Petrucci et al. 2021

[8] Marcel et al. 2018

Modeling and stability of absorption lines

Now to be compared with observations for objects with detections

Modeling and stability of absorption lines

UGA

Grenoble Alpes

Université

é.

Œ

d)

------ No hot wind

Hot wind

-2.5

-3.0

7/11 Methodology

Line detection

Grenoble Alpes

Université

Results • Distributions

ROMA TRE UNIVERSITÀ DEGLI STUDI

^{13/19} Results Distributions of line parameters

The FeKa25 EW correlates significantly with luminosity

FeKa26 EW behaves completely differently

UGA

Grenoble Alpes

Université

Parameter distribution and correlation

□This can be explained if the range of ionisation parameter we probe has two different behaviors for FeKa26/FeKa25.

Example of the effect of Ux (modified ionisation parameter) on the line EW for a single spectral shape in AGNs [13]

Parameter distribution and correlation

□This can be explained if the range of ionisation parameter we probe has two different behaviors for FeKa26/FeKa25.

Example of the effect of Ux (modified ionisation parameter) on the line EW for a single spectral shape in AGNs [13]

Parameter distribution and correlation

This can be amplified by the changes in spectral state (even in the soft state) of BHLMXBs

Effect of different SEDs on the ionic fractions of Fe XXVI and Fe XXV in GX339-4 from [1]

[1] Petrucci et al. 2021

Parameter distribution and correlation

This can be amplified by the changes in spectral state (even in the soft state) of BHLMXBs

FeKa26 Scatter color-coded with the HR ratio

The bigger picture

Source		accretion states with absorption lines reported					
	this work	other works					
	iron band	iron band	other energies				
4U 1543-47	X	soft (I)	Х				
4U 1630-47	soft	soft (2)	soft^X (3)				
EXO 1846-031	X	hard (4)	Х				
GRO J1655-40	soft	soft ₍₅₎	$\operatorname{soft}^{X}_{6}$				
GRS 1716-249	X	X	hard ^V				
GRS 1758-258	X	hard ₍₈₎	Х				
GRS 1915+105	soft,hard	soft: $\phi, \gamma, \rho, \beta_{(1)}, \theta_{(10)}, \kappa_{(11)}, \lambda_{(12)}, hard: \chi_{(13)}, obscured^{(15)}$	$\mathrm{soft}^X:\phi_{(14)}$				
GX 339-4	X	X	$soft^{V}$ (16), hard V (16)				
H 1743-322	soft	soft _{[17])}	Х				
IGR J17091-3624	X	soft (18),hard(19)†	$hard^{X}$ (20)				
IGR J17451-3022	soft	soft _{[21])}	soft ^X (21)				
MAXI J1305-704	X	soft[22])(23), hard (23)	$soft^{X}(22)(23),hard^{X}(23)$				
MAXI J1348-630	X	$soft_{(24)}, hard_{(24)}$	hard ^{X} [25], soft ^{IR} (26), hard ^{V,IR} (26)				
MAXI J1803-298	X	soft _(27]) (28)	hard ^V (29)				
MAXI J1820+070	X	soft ₍₃₀₎	$soft^{IR}$ (31), hard V,IR (31)				
Swift J1357.2-0933	X	X	hard ^V (32) (33)				
Swift J1658.2-4242	X	hard (34)	Х				
V404 Cyg	X	hard (35)	obscured*: hard ^{X} (36), hard ^{V} (37)				
V4641 Sgr	X	X	obscured*: hard ^V (38)				
XTE J1652-453	X	hard † (39)	Х				

UGA

Grenoble Alpes

Université

The bigger picture

Source		accretion states with absorption lines repo	orted
	this work	other works	
	iron band	iron band	other energies
4U 1543-47	X	soft (])	Х
4U 1630-47	soft	soft (2)	soft ^X (3)
EXO 1846-031	X	hard (4)	Х
GRO J1655-40	soft	soft ₍₅₎	soft ^X (6)
GRS 1716-249	X	X	hard ^{V} (7)
GRS 1758-258	X	hard ₍₈₎	Х
GRS 1915+105	soft,hard	soft: $\phi, \gamma, \rho, \beta_{(1)}, \theta_{(1)}, \kappa_{(1)}, \lambda_{(1)}, hard: \chi_{(1)}, obscured^{*}_{(15)}$	soft ^x : <i>\phi</i> [14])
GX 339-4	X	X	$soft^{V}$ (16), hard V (16)
H 1743-322	soft	soft _{[17])}	Х
IGR J17091-3624	X	soft (18),hard(19)†	$hard^{X}(20)$
IGR J17451-3022	soft	soft _[21])	soft ^X (21)
MAXI J1305-704	X	soft[22],(23],hard (23)	$\operatorname{soft}^{X}(22)(23)$, hard (23)
MAXI J1348-630	X	$soft_{(24)}, hard_{(24)}$	hard ^X (25, soft ^{IR} (26), hard ^{V,IR} (26))
MAXI J1803-298	X	soft(27]) [28])	hard ^V (29)
MAXI J1820+070	X	soft ₍₃₀₎	$soft^{IR}$ (31), hard V,IR (31)
Swift J1357.2-0933	X	X	hard ^V (32]) (33])
Swift J1658.2-4242	X	hard (34)	X
V404 Cyg	X	hard (35)	obscured*: hard ^{X} (36), hard ^{V} (37)
V4641 Sgr	X	X	obscured* hard ^V (38)
XTE J1652-453	X	hard † (39)	Х

UGA

Grenoble Alpes

Université

The bigger picture

Source		accretion states with absorption lines reported					
	this work	other works					
	iron band	iron band	other energies				
4U 1543-47	X	soft 🕕	Х				
4U 1630-47	soft	soft [2])	soft ^X (3)				
EXO 1846-031	X	hard (4)	Х				
GRO J1655-40	soft	soft ₍₅₎	soft ^X (6)				
GRS 1716-249	X	X	hard ^V (7)				
GRS 1758-258	X	hard ₍₈₎	Х				
GRS 1915+105	soft,hard	$\operatorname{soft}:\phi,\gamma,\rho,\beta_{(0)},\theta_{(10)},\kappa_{(11)},\lambda_{(12)},\operatorname{hard}:\chi_{(13)},\operatorname{obscured}_{(15)}$	soft ^X : $\phi_{(14)}$ IR ?				
GX 339-4	Х	Х	$soft^{V}$ (16), hard V (16)				
Н 1743-322	soft	soft[17])	Х				
IGR J17091-3624	X	soft (18), hard (19) †	$hard^{X}$ (20)				
IGR J17451-3022	soft	soft _{[21])}	soft ^X (21)				
MAXI J1305-704	Х	soft[22],(23]),hard (23)	$\operatorname{soft}^{X}(22)(23)$, hard (23)				
MAXI J1348-630	X	$soft_{(24)}, hard_{(24)}$	hard ^X (25) , soft ^{IR} (26) , hard ^{V,IR} (26)				
MAXI J1803-298	Х	soft(27])(28))	$hard^{V}$ (29)				
MAXI J1820+070	X	soft ₍₃₀₎	soft ^{IR} (31),hard ^{V,IR} (31)				
Swift J1357.2-0933	X	Х	hard $(32)(33)$				
Swift J1658.2-4242	X	hard (34)	X				
V404 Cyg	Х	hard (35)	obscured*: hard ^X $(36 $, hard ^V (37)				
V4641 Sgr	Х	X	obscured* hard ^V (38)				
XTE J1652-453	X	hard [†] (39)	X				

Université Grenoble Alpes

8/8

Dipper

Dynamical

high

inclination

No conclusive

info

The bigger picture

Source		accretion states with absorption lines repo	orted
	this work	other works	
	iron band	iron band	other energies
4U 1543-47	X	-soft -	Х
4U 1630-47	soft	soft (2)	soft ^X (3)
EXO 1846-031	X	-hard(4)	Х
GRO J1655-40	soft	soft ₍₅₎	soft ^X (6)
GRS 1716-249	X	X	hard ^V (7)
GRS 1758-258	X	-hard _{op}	Х
GRS 1915+105	soft,hard	$\operatorname{soft}:\phi,\gamma,\rho,\beta_{(1)},\theta_{(1)},\kappa_{(1)},\lambda_{(1)},\operatorname{hard}:\chi_{(1)},\operatorname{obscured}*_{(1)}$	$\operatorname{soft}^X:\phi_{\overline{(14)}}$
GX 339-4	X	X	$\operatorname{soft}^{V}(16)$, hard $V(16)$
H 1743-322	soft	soft _{[17])}	Х
IGR J17091-3624	X	soft (18), hard (19)) †	hard ^X (20)
IGR J17451-3022	soft	soft _{[21])}	soft ^X (21)
MAXI J1305-704	Х	- 50ft(22)(23), hard (23)	soft ^X (22) (23), hard ^X (23)
MAXI J1348-630	X	soft(24), hard(24)	hard ^X (25), soft ^{IR} (26), hard ^{V,IR} (26)
MAXI J1803-298	X	soft(27)(28)	hard ^V (29)
MAXI J1820+070	X	-soft _{50,}	soft ^{IR} (31),hard ^{V,IR} (31)
Swift J1357.2-0933	X	Х	hard $(32)(33)$
Swift J1658.2-4242	X	-hard (34))	X
V404 Cyg	Х	hard (35)	obscured*: hard ^X $(36 $, hard ^V (37)
V4641 Sgr	Х	Х	obscured* hard ^V (38)
XTE J1652-453	X	hand + (394)	X

Dipper

Dynamical high inclination

No conclusive info

8/8

The bigger picture

Source		accretion states with absorption lines repo	orted
	this work	other works	
	iron band	iron band	other energies
4U 1543-47	X		X X
4U 1630-47	soft	soft (2)	soft ^X (3)
EXO 1846-031	X	-hard(4)	X
GRO J1655-40	soft	soft ₍₅₎	soft ^X (6)
GRS 1716-249	Х	Х	hard ^V ^[7]
GRS 1758-258	X	-hard _{la} ,	Х
GRS 1915+105	soft,hard	soft: $\phi, \gamma, \rho, \beta$, θ , θ , θ , θ , θ , θ , λ	$\operatorname{soft}^X: \phi_{\overline{(14)}}$ IR ?
GX 339-4	Х	Х	$soft^{V}$ (16), hard V (16)
H 1743-322	soft	soft[17])	Х
IGR J17091-3624	X	soft (18), tard (19)	$hard^{X}$ (20)
IGR J17451-3022	soft	soft _{[21])}	soft ^X (21))
MAXI J1305-704	Х	- 50/1(22)(23), hard (23)	$\operatorname{soft}^{X}(22)(23)$, hard (23)
MAXI J1348-630	X	soft(24), hand(24)	hard ^X (25), soft ^{IR} (26), hard ^{V,IR} (26))
MAXI J1803-298	Х	soft(27)(28)	hard ^V (29)
MAXI J1820+070	X	-softer 🤇 missing?	$soft^{IR}$ (31), hard V, IR (31)
Swift J1357.2-0933	Х	x	hard ^V (32) (33)
Swift J1658.2-4242	Х	-hard 34)	X
V404 Cyg	Х	hard (35)	obscured*: hard ^X (36), hard ^V (37)
V4641 Sgr	Х	X	obscured* hard ^V (38)
XTE J1652-453	X	hard + (39)	Х

UGA

Grenoble Alpes

Université

8/8

Dipper

Dynamical

high

inclination

No conclusive

info

The bigger picture

8/8

Dipper

Dynamical

high

inclination

info

UGA Université **Grenoble Alpes**