Seeing Between the Lines: Insights into Supernova Remnants with High-Resolution X-ray Spectroscopy

Matthew Millard (University of Iowa) Chandra High-Resolution X-ray Spectroscopy Workshop August 1st, 2023

Supernova Remnant Emission

Credit: NASA/CXC/SAO

X-ray Spectra of Supernova Remnants

- Nucleosynthesis products of supernovae have prominent emission lines in the 0.5 - 10 keV band
 - Intermediate-mass elements (O, Ne, Mg, Si, S, Ar, Ca)
 - Iron-group elements (Fe, Ni, and trace elements).
- Plasmas have typical electron temperatures from 0.2 - 5 keV

"Medium Resolution"

https://hea-www.cfa.harvard.edu/ChandraSNR/sample_spectrum.html

Medium vs High-Resolution X-ray Spectroscopy

(Vink 2012)

Modern High-Resolution X-ray Spectrometers

- Hitomi
 - SXS
 - ~ 5 eV FWHM in 0.3 12 keV band

Studying SNRs with High-Resolution X-ray Spectroscopy

- High-resolution X-ray spectroscopy (HRXS) grants the ability to distinguish closely-spaced emission lines in an X-ray spectrum
- What insights into supernova remnants can be gained with HRXS?

Insights into Supernova Remnants with HRXS

• Kinematics

- Precision Doppler shift measurements
 ---> Reveals detailed 3D Structure
 - Error down to 100's of km s⁻¹
- Subtle asymmetries in ejecta distribution constrain explosion mechanisms
- Investigate the properties of the surrounding medium

Cas A

3D Velocity Distribution in Tycho (Millard et al. 2022)

- Ejecta v_r up to ~5500 km s⁻¹
 - Velocity error ~ 500 km s⁻¹
- Generally higher ejecta speeds toward the SE
- Apparent large-scale asymmetry
 - Northern half mostly blueshifted
 - Southern half mostly redshifted

CSM Kinematics in Kepler (Kasuga et al. 2021)

- XMM-RGS observation of Kepler
- Studying dense, asymmetric circumstellar medium (CSM)
- CSM is blueshifted with a velocity of up to 500 km s⁻¹ at edge
 - Consistent with runaway AGB star as progenitor
- Central bar structure, indicative of torus
 - Northwest half is blueshifted
 - Southeast half is redshifted

Insights into Supernova Remnants with HRXS

- Plasma diagnostics
 - Electron temperatures
 - He-like K α / He-like K β ratio
 - He- α / Ly- α ratio
 - G-ratio (f + i)/r in He-like ions
 - Ion temperatures
 - Line broadening (~ 1 eV)
 - Detection requires E / Δ E > 100

(Dewey 2008)

Ion Temperature in SN 1006 (Broersen et al. 2013)

- XMM-Newton-RGS observation of SN 1006
 - Bright ejecta knot in northwestern region
- Measured Doppler broadening of the O VII line
 - $\sigma = 2.46 \pm 0.3$ eV, corresponds to $kT_{OVII} = 275^{+72}_{-63}$ keV
 - Electron temperature was measured at 1.35 ± 0.10 keV with CCD spectroscopy
 - Temperatures between species are not in equilibrium

Evolution of SN 1987A

- SN 1987A has been regularly monitored with Chandra since its launch in 1999
- Revealed blastwave impact with equatorial ring (ER)
 - Sudden decrease in the blast wave velocity
 - Dramatic increase in the soft X-ray flux
- Light curve begins to flatten at ~ 7000 days

Evolution of SN 1987A (Ravi et al. 2021)

Chandra HETG

- Significant changes in the X-ray line-flux ratios (among H- and He-like Si and Mg ions) in 2018
- Coincide with recent changes in electron temperatures and volume-emission measures
- Transitionary phase the shock leaves the ER and propagates into a red supergiant wind
- No significant elemental abundance evolution as of 2018

Insights into Supernova Remnants with HRXS

- Charge exchange and resonance scattering predicted in SNRs; evidence remains elusive
- Charge exchange (CX)
 - One or more electrons are transferred from one atom to another
 - The receiving ion may be left in an excited state after the exchange
 - May deexcite by releasing an X-ray
- Resonance scattering (RS)
 - High column density of ions along the line of sight may scatter resonance line photons
- Elemental Abundances

CX in the Cygnus Loop (Uchida et al. 2019)

- Southwestern knot (SW-K) region studied with XMM-Newton-RGS
- High forbidden-to-resonance line ratio of O VII He α
- Soft-band (10–35 Å) spectrum is well explained by a thermal component with charge exchange X-ray emission.
- Measured low elemental abundance of the SW-K confirms "low-abundance problem" in evolved SNRs

Resonance Scattering in N49 (Amano et al. 2020)

- XMM-Newton-RGS spectrum of N49 shows a high G-ratio of O VII Heα lines as well as O VIII Lyβ/α and Fe XVII (3s–2p)/(3d–2p) ratios
 - Can be explained by resonance scattering
- Resonance scattering has a large impact on measurements of the oxygen abundance.

Hitomi Observation of N132D (Hitomi Collab. 2018)

- Very short observation of only 3.7 ks due to loss of attitude
- Fe emission is highly redshifted at $\sim 800~{\rm km~s^{-1}}$ compared to the local ISM in the LMC
- Fe ejecta may be highly asymmetric, since no blueshifted component is found

Future HRXS Detectors

- XRISM (X-Ray Imaging and Spectroscopy Mission)
 - Resolve

Suzaku XRS --> Hitomi SXS --> XRISM Resolve

• Launch planned for August 26, 2023

		XRISM Resolve	LEM
Energy band, keV		0.4–12	0.2–2
Effective area, cm ²	0.5 keV 6 keV	50 300	1600 0
Field of view		3'	30'
Grasp, 10 ⁴ cm ² arcmin ²	0.5 keV	0.05	140
Angular resolution		75″	15"
Spectral resolution		7 eV	1 eV (central 7'), 2 eV (rest of FOV)
Detector size, pixels (equiv. square)		6×6	118×118

(Kraft et al. 2022)

- LEM (Line Emission Mapper)
 - X-ray Probe for the 2030s

Energy (keV

(Greco et al. 2020)

Acknowledgements

- Thank you to
 - The workshop Science/Local Organizing Committees
 - The CXC team
- For a detailed review, please see
 - Katsuda, S., "High-Resolution X-Ray Spectroscopy of Supernova Remnants", arXiv e-prints, 2023. doi:10.48550/arXiv.2302.13775