Line Emission Mapper – the Astrophysics Probe for the 2030s

PI: Ralph Kraft (SAO) Deputy PI: Caroline Kilbourne (NASA GSFC)

Formation of a Milky-Way mass galaxy feedback from Supermassive Black Hole color: hot gas density (Nelson et al. 2019) LEM Team: SAO, GSFC, University of Chicago, LLNL, Lockheed Martin

High Resolution X-Ray Spectroscopy – Chandra workshop – Aug 3, 2023

LEM mission concept

- Designed to study faint, extended X-ray emission in 0.2–2 keV band with calorimeter spectral resolution Cosmic Ecosystems
- Large-area Si-shell X-ray mirror (10" resolution) with X-ray microcalorimeter array covering 30'×30' FOV with 15" pixels, 1–2 eV resolution
 - 50× FOV, 20× grasp of newAthena XIFU
 - □ XMM-like imaging with 50× spectral resolution
- Deep pointed observations + all-sky survey
- Opens enormous discovery space for Guest Observations in all areas of X-ray astrophysics

LEM Technical Capabilities – the X-ray Optic

- □ Pt-coated Si thin-shell grazing-incidence mirror, d = 1.5m, f = 4m
- Require 10" HPD angular resolution
 - □ 2.7" HPD already demonstrated at 4.5 keV in the lab (Mar 2021) for single module
 - □ A 15" detector pixel contains 90% of the PSF
- Synergy with mirror development for STAR-X (as well as AXIS and HEX-P
 - TRL 6 demonstration required as part of STAR-X phase A the LEM optic is effectively undergoing a TRL 5 demonstration

- Lockheed-Martin dewar and cryocoolers
- GSFC detectors, focal-plane assembly, sub-50-mK cooler, aperture filters
- Detectors based on Transition-Edge Sensor (TES) detectors being developed for Athena/X-IFU
 - Same basic sensor design, but lower T_c and absorber composition optimized for <2 keV
 - 15" (0.29 mm) pitch
 - 7' x 7' square interior sub-array
 - 1 pixel / TES
 - 1 eV resolution
- outer array filling out to hexagonal perimeter area equivalent to

30' x 30' square

• Hydras (4 pixels/TES) to provide more FOV/channel with same angular resolution - 2 eV resolution

ASTROPHYSIC

CHICAGO

LEM Capabilities and Science

LEM provides transformative capabilities in all the science areas highlighted at this workshop

- Supernovae and their RemnantsStars I/II/II
- Diffuse Gas and Emission
- Diffuse Gases and Absorption
- ✓ AGN I/II
- Compact Objects and Novae
- ✓ Compact Objects: Binaries
- ✓ Compact Objects: Winds

		LEM	XRISM Resolve	ATHENA XIFU	HUBS
	Energy band, keV	0.2–2	0.4–12	0.2–12	0.2–2
I	Effective area, 0.5 keV cm ² 6 keV	1600 0	50 300	6000 2000	500 0
	Field of view	30'	3'	5'	60'
G	rasp, 10 ⁴ cm ² arcmin ²	140	0.05	12	180
	Angular resolution	15"	75"	5''	60''
	Spectral resolution (FWHM)	1 eV central 7x7' 2 eV rest of FOV	7 eV	3 eV	2 eV
	Detector size (equiv. pixels)	118 x 118	6 x 6	50 x 50	60 x 60

Comparison of LEM and other **future** X-ray imaging spectrometers XRISM Resolve, Athena XIFU (pre-reformulation), and the notional Chinese HUBS mission

(There are no past or present imaging spectrometers to compare to)

INE EMISSION MAPPER

Cosmic Web

LEM will transform our understanding of formation of cosmic structure over 7 orders of magnitude in linear scale (from pc to tens of Mpc)

- □ Map galactic gas halos "key missing link" in our understanding of galaxy formation
- Map metals in the Cosmic Web to probe history of galactic feedback
- Map effects of stellar feedback on galaxies: supernova remnants, superbubbles, galactic winds

See talks by I. Zhuravleva, A. Ogorzalek, and J.

Zuhone

100

1,000

100,000

1,000,000

Size, light years

Shallow All-Sky Survey

 First-ever calorimetric survey of the whole sky – enormous discovery space

Uniquely detailed perspective on the physics of galactic feedback – a view from inside a Milky Way mass galaxy!

- Because we can LEM has the grasp
- Spend 10% of total mission lifetime on survey (uniform 100 s depth), in several snapscans over 5 years

LEM serendipitous science with an imaging calorimeter

- Thousands of AGN, dozens of galaxy clusters and groups in every 30'×30' LEM field some at very high z
- Example: search for high-z galaxy clusters using matched filtering in energy space (using the known thermal plasma line energies):

 $\log M_{500} = 13.7$ z = 1.80

Courtesy: G. Schellenberger

time-resolved spectroscopy with 20-100× effective area of Chandra LETG/HETG

LEM spectrum of a flaring star COUP 7

CENTER F

Adara

ASTROPHYSICS

CHICAGO

Courtesy: J. Drake

LEM Time Domain Science - TDEs

Example: ASASSN14li

Figure 2 | The high-resolution X-ray spectra of ASASSN-14li reveal blue-shifted absorption lines. Spectra from the long stare with *XMM-Newton* and the combined *Chandra* spectrum are shown. *XMM-Newton* spectra from the RGS1 and RGS2 units are shown in black and blue, respectively; the RGS2 unit is missing a detector in the 20–24Å band. The best-fit photoionized absorption model for the outflowing gas detected in each spectrum is shown in red (see *Methods*), and selected strong lines are indicated. Below each spectrum, the goodness-of-fit statistic ($\Delta\chi^2$) is shown before (cyan) and after (black) modeling the absorbing gas.

Figures from Miller et al. 2015

- Hundreds of TDEs per year will be detected by ground-based methods, many expected to be X-ray bright for months to years
- □ Follow-up of these and other nuclear transients can probe powerful winds
- Example: TDE ASASSN14li was one of the brightest and best-studied TDEs

Courtesy: J. Steiner

Why THE excitement about LEM?

INE EMISSION MAPPER

LEM team outside Phillips Auditorium in Cambridge, MA during First LEM Science Workshop - Feb 2023

- LEM science directly responsive to Decadal
 - Paradigm-changing in area of Cosmic Ecosystems
 - Powerful new capabilities for GO investigations in all areas of astrophysics
- The mission enabling technologies are ready after decades of investment
- The required mission architecture is implementable at \$1B
- LEM capabilities span the astrophysics community
- LEM will have great synergies with other facilities in the 2030s
- LEM team working hard to finish proposal!