

High-resolution spectroscopy of Active Galactic Nuclei (AGN)

Matteo Guainazzi

ESA/ESTEC, Noordwijk (The Netherlands)

ESA UNCLASSIFIED – For ESA Official Use Only

±= -

٥

= = •

Matteo Guainazzi, "High-resolution spectroscopy of AGN" HRXS, MiT 2 August 2023

i

×

+

AGN probe General Relativity in the "strong field" regime

Psaltis, 2008, LRR, 11, 9

Matteo Guainazzi, "High-resolution spectroscopy of AGN" HRXS, MiT 2 August 2023

Bambi et al., 2021, SSR, 217, 65

Distribution of AGN BH spin in the local Universe

0.99

0.75

BH Spin

0.25

 10^{-1}

 10^{0}

 10^{1}

BH Mass ($10^6 M_{\odot}$)

Low-mass Sample

 10^{2}

Reynolds 2021

 10^{4}

 10^{3}

- The distribution of black hole spins in AGN is a fossil remnant of galaxy evolution
- High-spin: coherent accretion
- Low-spin: frequent episodes of [spinmixing] galaxy mergers

Not a X-ray high-resolution science, but ...

v_{FWHM} ∼ 15,900 km s⁻¹

- Produced at $\leq 30 R_g$
- Density (n_e~3x10¹⁴ cm⁻³) consistent with accretion disk theory
- Only two other RGS detections known
- CCD-dominated science prior to the advent of XRISM and NewAthena

[Barret & Cappi, 2019, A&A, 628, 1. For an iconoclastic view: Parker at el. 2022, MNRAS, 513, 551]

 $[R_g$ is the "gravitational radius"]

X-ray spectroscopy uniquely probe the AGN structure

Gandhi et al., 2022, Nature Astronomy, 6, 1364

- AGN are *unresolved* and *unresolvable*
- Important nuclear spatial scales:
 - R_{ISCO}: innermost stable disk orbit
 - R_{X-ray}: X-ray source
 - R_{BLR}: gas in virial motion*
 - R_{dust}: sublimation radius
- Spectroscopy allows us to perform milli-arcseconds (indirect) imaging

 $^{*}BLR=Broad Line Regions$. Emit broad (~10³ km s⁻¹) emission lines, originally used to identiy AGN in galaxies

X-ray BLR: innermost region of the optical BLR

Peretz et al., 2019, ApJ, 879, 102

Emission region of the K_{α} fluorescent line

AGN "feedback"

- Tight correlations between the BH mass and quantities related to the galaxy size (here is stellar velocity dispersion) in massive bulges
- Strong evidence for a causal relation between BH grow and star formation: "AGN feedback"

Absoprtion-dominated AGN X-ray spectra

- Resonant absorption lines from He- and H-like ions from C (0.3 keV) to Fe (~7.0 keV)
- Detected in ~3/4th of nearby AGN [Laha, Guainazzi et al., 2014, MNRAS, 441, 2613]
 - Fundamental constituent of the accretion disk/BH coupling
- Wide range of velocities (10³⁻⁵ km/s), column densities (10²⁰⁻²⁴ cm⁻²), ionization states

The physics of X-ray outflows is mostly known

Adhikari et al., 2019, ApJ, 881, 78

Laha, Guainazzi, et al., 2016, MNRAS, 457, 3896

Gofford et al., 2013, MNRAS, 430, 60

Spectra of the UFOs in **PDS456** (the brightest AGN in the local Universe)

Suzaku/XIS (v_{out}~0.261±0.007)

XMM-Newton/RGS ($v_{out} \sim 0.258 \pm 0.003$)

CCD-resolution dominated science before the advent of XRISM and NewAthena

Feedback effect of galactic outflows

Connecting feedback at all scales

Zunovas & King, 2012, ApJL, 745, L34

Do outflows conserve momentum or energy? Key unsolved question for feedback

Emission-line dominated AGN spectra (RGS view)

Kinkhabwala et al., 2002, ApJ, 575, 732

- The deepest emission-line dominated X-ray spectrum of an AGN: NGC1068
- Unveiled when the direct AGN emission is obscured
- Photoionized plasma by the AGN radiation field
- Prototypes of all heavily absorbed AGN [Guainazzi & Bianchi, 2007, MNRAS, 374, 1290]
- Benchmark for atomic physics

Emission-line dominated AGN spectra (Chandra)

NGC 1068 Chandra image (red) and grating spectrum

Credit: X-ray (NASA/CXC/MIT/C.Canizares, D.Evans et al), Optical (NASA/STScI), Radio (NSF/NRAO/VLA)

- Spectra are produced by diffuse gas in the nuclear environment (≤1 kpc)
- Seen also in the optical "Narrow-Line Regions" and ionisation cones
- Moderately (~500 km s⁻¹) outflowing gas [Grafton-Waters et al., 2021, A&A, 649, 162]
- X-rays spatially coincident with [OIII] (optical) and jet (radio)

[Bianchi, Guainazzi, Chiaberge, 2006, A&A, 448, 499]

Radiation Pressure Compression (RPC)

Let's take a gas cloud where:

1. radiation is the strongest force applied

2. $P_{rad} \gg P_{gas,0}$

It follows:

- At the ionisation front, *P*_{gas}=*P*_{rad}
- Wide range in N_{H} , kT, and ξ
 - co-spatial emission of a wide range of ions
- Differential Emission Measure determined by the hydrostatic equilibrium of the cloud
 - almost "free parameters-free"

Universal DEM describes well high-quality AGN spectra @esa

Bianchi, Guainazzi, et al., 2019, MNRAS, 485, 416

Similarly good fits on other 14 sources (these are just the highest-quality spectra)

Most likely, produced in the *innermost* NLR

Reynaldi et al., 2020, MNRAS, 499, 5107

"Whereof what's past is prologue"

W. Shakespeare, "The tempest"

Future spectroscopic performance Figures-of-merit

Weak line detection

Strong line velocity

Strong line broadening

XRISM and NewAthena will cater for:

- 1. unprecedented energy resolution
- 2. large area
- 3. true integral-field unit capabilities

Outflow launching mechanism with Athena

Outflow spectroscopy with micro-calorimeters

Credit: X-IFU Consortium

Spatially-resolved NLR spectroscopy with Athena

Cappi et al., 2013, arXiv1306.2330

Single electron scattering distorts the shape of an emission line on ≤ 0.2 eV scales

Compton shoulder in AGN torus with XRISM

Hikitani et al., 2018, ApJ, 867, 80

Constraining the geometry of the X-ray torus (*i*=inclination; σ =amplitude of the torus cloud distribution)

Take-home messages

- Chandra and XMM-Newton high-resolution spectroscopy has revolutionized our view of super-massive accreting black holes
- Enabled a deep understanding of the physics of AGN outflows.
- Unveiled a universal explanatory framework for hot photoionised gas in the nuclear environment: Radiation Pressure Confidement
- Probed the whole outflow chain eventually leading to "AGN feed-back" onto the host galaxy interstellar medium
- XRISM/NewAthena sorely needed to:
 - study the dynamics of all outdows phases.
 - ascretain the outflow launching mechanism
 - constrain the X-ray reprocessor geomnetry
 - robustly determine the AGN BH spins distribution in the local Universe
- > Much more on AGN outflows in Missagh's talk after lunch!