X-ray Reflection Modeling in the Era of High-Resolution Spectroscopy

@Cathrinmachin

Javier A. García NASA Goddard Space Flight Center

Chandra Workshop—High-Resolution X-ray Spectroscopy MIT, Cambridge, MA—Aug 1, 2023

Distant Reflection

X-ray Reflection Spectroscopy

Coronal Emission

Relativistic Reflection

Distant Reflection

Mass of the Compact Object

1.4 - 3 M⊙

3 - 100 M⊙

10⁵ - 10⁹ M⊙

First Detections of X-ray Reflection

1990's: ROSAT, ASCA. First CCDs flying on X-ray observatories. First detections of a distorted Fe K line, which was interpreted as emission affected by relativistic effects near the BH (Tanaka et al. 1995; Nandra et al. 1997; Fabian et al. 2000).

The line profile of iron K-alpha from MCG-6-30-15 observed by the ASCA satellite (Tanaka et al. 1995)

Resolution 0.12 keV @ 6 keV

Past, Present, and Future X-ray Detectors

Barret & Cappi (2019)

Past, Present, and Future X-ray Detectors

X-ray Reflection at High-Resolution ($\sim \mu$ -cal)

X-ray Reflection at High-Resolution ($\sim \mu$ -cal)

XTE J1550—564: LOW INCLINATION DISK?

Inclination from reflection modeling inconsistent with radio jet and optical monitoring determinations of the orbital inclination, *i* ~ 40 deg, as opposed to *i* ~ 75 deg Orosz et al. 2011, Steiner et al. 2012).

Possible misaligned inner accretion region?

Irradiation of Flared Disks

Brod et al. (2013)

Disk obscuration reduces the bluewing of the Fe K emission --> Resembles lower inclination!

Obscuration effects:

Under an inclination of **78.5**°, part of the disk is covered, affecting both the line profiles and the time lags

X-ray Polarization Measurements: Cyg X-1

IXPE: The Imaging X-ray Polarimetry Explorer

Polarization angle parallel to the outflowing radio jet

Krawczynski,..., JG+22

Detection of linear polarization degree of 4.0+/-0.2% in 2-8 keV (>20 sigma)

Larger than expected polarization requires a disk inclination larger than the orbit!

Super-Eddington Accretion

Multiple reflections in a funnel (simulations by Zijan Zhang and Jane Dai)

Lamppost corona height: $h_{\rm LP}$ Funnel half open angle: θ

Wind velocity: v(r) =

$$=\left(\frac{r-6R_g}{r+R_{acc}}\right)v_{d}$$

 $h_{\rm LP} = 30R_g, v_t = 0.5c, R_{\rm acc} = 30R_g, \theta = 30^\circ$

Super-Eddington Accretion

Multiple reflections in a funnel (simulations by Zijan Zhang and Jane Dai)

Lamppost corona height: $h_{\rm LP}$ Funnel half open angle: θ

Wind velocity: v(r) =

$$=\left(\frac{r-6R_g}{r+R_{acc}}\right)v_{d}$$

 $h_{\rm LP} = 30R_g, v_t = 0.5c, R_{\rm acc} = 30R_g, \theta = 30^\circ$

Relativistic Reflection: relxiINS

				200	
Table 2. List of Paran	neters for the rel	xillNS Model		800	
Parameter	Symbol (Units)	Range	(700 -	Oxygen K
Inner Emissivity Index	q_1	[-10, 10]	keV	600 -	
Outer Emissivity Index	q_2	[-10, 10]		500	
Break Radius	$R_{ m Br}~(R_g)$	[1 - 1000]	-2 6	500 -	
Spin Parameter	$a_* \ (cJ/GM^2)$	$\left[-0.998, 0.998 ight]$	сm	400 -	
Inclination	$i \; ({ m degrees})$	[3, 87]	suc	400	
Inner Disk Radius	$R_{ m in}~(R_{ m ISCO})$	[1, 1000]	loto	300 -	
Outer Disk Radius	$R_{ m out} \; (R_g)$	[1, 1000]	(Pł		
Blackbody Temperature	$kT_{\rm bb}~({\rm keV})$	[0.5,10]	بر ب	200 -	
Ionization Parameter	$\log(\xi/\mathrm{ergcms^{-1}})$	[1,4]	ke		
Electron Number Density	$\log(n_e/{\rm cm}^{-3})$	[15, 19]		100 -	
Iron Abundance	$A_{\rm Fe}$ (Solar)	$\left[0.5,10 ight]$			
Reflection $Fraction^a$	R_{frac}	[0, 10]		0.4	0.5

 a If this parameter is set to negative values, the model only outputs the reflection component, without the continuum.

JG, Dauser, Ludlam+22

Relativistic Reflection: relxillNS

				۲ 	elxillNS spe
Table 2. List of Paran	neters for the rel	xillNS Model		800	
Parameter	Symbol (Units)	Range	1)	700 -	Oxygen K
Inner Emissivity Index	q_1	[-10, 10]	⟨e∖/-	600 -	
Outer Emissivity Index	q_2	[-10, 10]		500	
Break Radius	$R_{ m Br}~(R_g)$	[1 - 1000]	1-2	500 F	
Spin Parameter	$a_* (cJ/GM^2)$	[-0.998, 0.998]	сm	100 -	
Inclination	$i \; (degrees)$	[3, 87]	suc	400	
Inner Disk Radius	$R_{ m in}~(R_{ m ISCO})$	[1, 1000]	loto	300 -	
Outer Disk Radius	$R_{ m out} \left(R_g ight)$	[1, 1000]	(Pł		
Blackbody Temperature	$kT_{\rm bb}~({\rm keV})$	[0.5,10]	¢V²	200 -	
Ionization Parameter	$\log(\xi/\mathrm{ergcms^{-1}})$	[1,4]	ke		
Electron Number Density	$\log(n_e/{\rm cm}^{-3})$	[15, 19]		100	
Iron Abundance	$A_{\rm Fe}$ (Solar)	[0.5,10]			
Reflection $Fraction^a$	R_{frac}	[0, 10]		0.4	4 0.5
				12 _Г	
					Oxvaen K
JG, L	Jauser, Luc	alam+22		10	
			le le	8 -	
			Mode	6	
)ata/	° [
				4	
Simulated	d 10 ks Ath	nena X-IFU		2	
observation	of a 10 m	Crab sourc	e	-	
				0.	4 0.5

.

Neutron Star Radii

NuSTAR observations of Cygnus X-2 provide radius constraints complementary to other methods, helping to constrain models of the NS equation of state.

Ludiam,..., JG+22

Comparison with Previous Models

JG, Dauser, Ludlam+22

Test case 4U 1705-44

Broadly consistent results between relxillNS, BBRefl and ReflionX_BB when fitting NuSTAR data.

Larger discrepancies might be seen at softer energies

Comparison with Previous Models

Emission from the Plunging Region?

MAXI J1820+070

Fabian,...,JG+20

Disk Self Irradiation (Returning Radiation)

Radiation Returning to the Disk due to GR light bending

First observational evidence! —> Predicted by Cunningham (1975), and later by Agol & Krolik (2000)

Thermal Disk Emission

<u>Returning radiation detected in</u> <u>several other sources:</u>

- 4U 1630-47 (Connors, JG+21)
- EXO 1846-031 (Wang,...,JG+21)
- MAXI J0637-430 (Lazar,..., JG+21)
- GX 339-4 (JG+23)

New theoretical work:

- Effects on timing properties (Wilkins, JG+21)
- Effects on emissivity profiles (Dauser, JG+22)

. **GRMHD** Density Profiles

High resolution simulations without radiation.

There is no density drop inside the ISCO for the MAD case

—> Accretion does not proceed via viscous stress

Simulations courtesy of Matthew Liska

 $\log(\rho)$ at 82786 R_a/c

MAD

Venturing inside the ISCO

Dong, JG+23 (in prep.)

Reflection from inside the ISCO assuming a flat density profile

(**Preliminary results**)

New XSTAR routines and Atomic Data including:

- Screening of the atomic potential (Debey—Hückel approximation)
- Continuum lowering (truncation of the high-n states)
- Suppression of Dielectronic Recombination (Nikolik+20 formulae)

Kallman,..., JG+21 Mendoza,...,JG+21

New XSTAR routines and Atomic Data including:

- Screening of the atomic potential (Debey—Hückel approximation)
- Continuum lowering (truncation of the high-n states)
- Suppression of Dielectronic Recombination (Nikolik+20 formulae)

Kallman,..., JG+21 Mendoza,...,JG+21

New XSTAR routines and Atomic Data including:

- Screening of the atomic potential (Debey—Hückel approximation)
- Continuum lowering (truncation of the high-n states)
- Suppression of Dielectronic Recombination (Nikolik+20 formulae)

Kallman,..., JG+21 Mendoza,...,JG+21

Ding, JG+23 (in prep.)

Energy (keV)

The Present

Adapted from Risaliti+05

Slide courtesy of E. Kara

