

ACIS Update

Chandra Users Committee November 10, 2025

ACIS Overview

ACIS continues to function nominally and produce high quality data

Steiner (SAO)

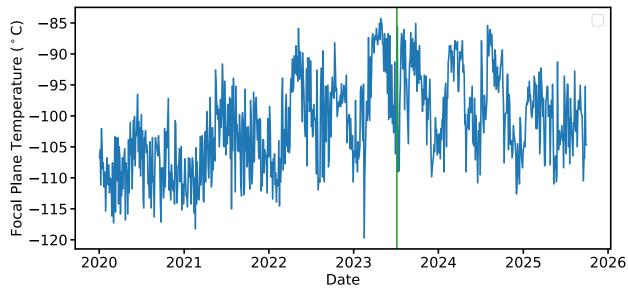
- All 10 CCDs are fully functional
- Electronics are nominal, primary units are still in use
- Flight software is nominal, latest version installed on 15 August 2025
- ~90% of GO & GTO observations use ACIS

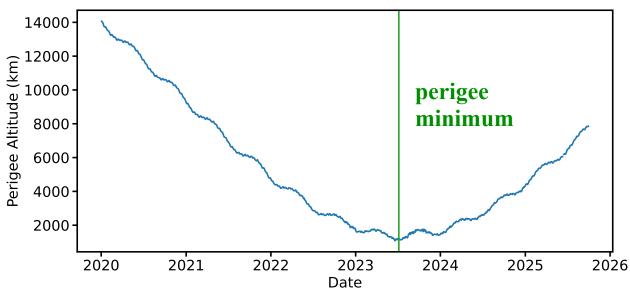
Cycle 25 GO & GTO Observing Statistics

Instrument	Grating	# of Obs	% of Obs	Time(ks)	% of Time
ACIS-I	NONE	366	36.5	6475	40.3
ACIS-S	NONE	450	44.9	7116	44.3
ACIS-S	HETG	41	4.1	837	5.2
Total			85.5		89.8

Highlights:

- No ACIS anomalies in the last year, operations has been smooth
- Minimal impact from perigee minimum during 2023, ACIS continues to function nominally
- FP temperature limits for observations have been easier to meet given relaxations of other spacecraft thermal limits
- ACIS is functioning as the radiation monitor for Chandra, a FI CCD is required to be on for every observation
- ACIS flight SW running without issue since update in August 2025

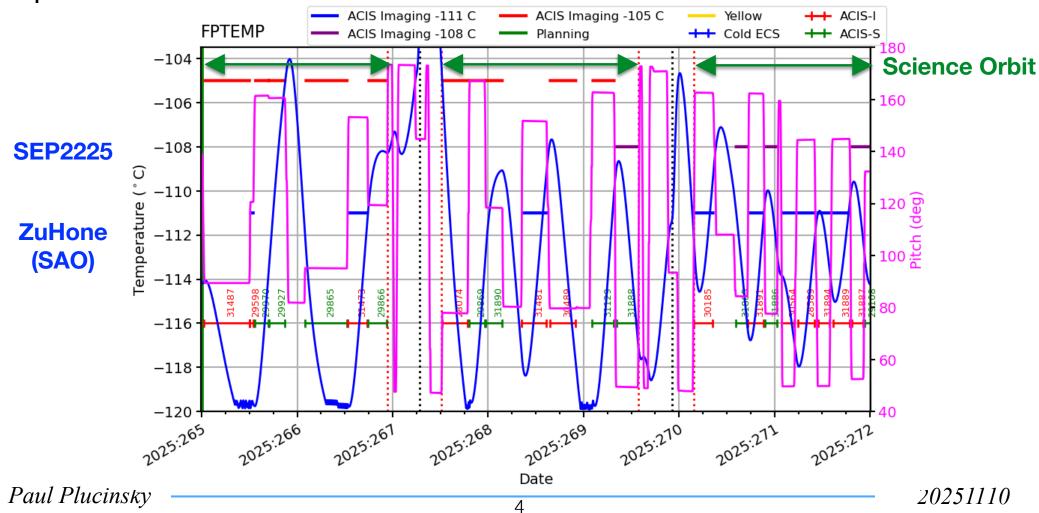



Chandra Low Perigee in 2023

- · ACIS FP temperature warms during perigee passages
- · FP temperature was kept below the Yellow High limit of -80 C for all perigee passages
- · Maximum temperatures are expected to decrease in the coming years

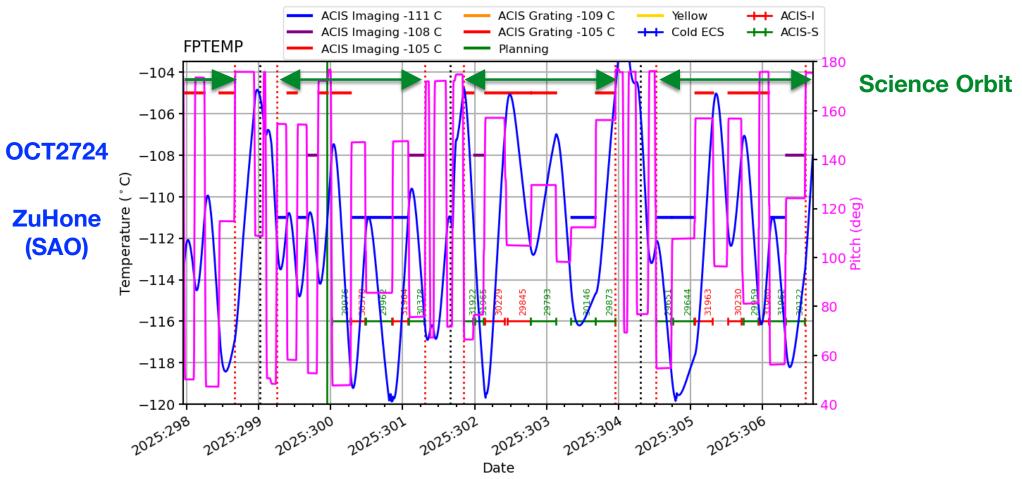
Maximum FP temperature during perigee passages

ZuHone (SAO)



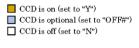
ACIS FP Temperature Limits for Observations

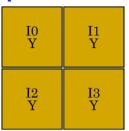
- -111 C ACIS-S & ACIS-I observations that benefit from the most accurate spectral response
- · -108 C ACIS-S & ACIS-I observations that can achieve the objectives with reduced spectral response
- -105 C ACIS-S & ACIS-I observations that can achieve the science objectives with even more reduced spectral response
- -109 C All ACIS-S/LETG and ACIS-S/HETG observations with a SIM Z offset of -6.0 mm or more positive such that the dispersed spectrum is farther from the readout
- -105 C ACIS-S/HETG observations with a SIM Z offset of -6.0 mm or more negative such that the dispersed spectrum is closer to the readout



ACIS FP Temperature Limits for Observations

- FP temperature is almost always increasing or decreasing
- KEY POINT: almost all of a GO observation will be executed with a FP temperature less than the limit providing higher quality data
- Calibration files account for this variable FP temperature
- Staying below these limits has gotten easier in the last year given the relaxation of other spacecraft thermal limits
- FP temperature model updated this year by J. ZuHone to maintain required accuracy

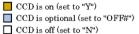

Paul Plucinsky

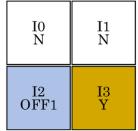


Optional CCD Usage

- Chandra GOs request "required" and "optional" CCDs for their observations
- A maximum of 4 required CCDs is allowed, a maximum of 6 total CCDs is allowed where total equals required + optional
- Limiting the number of active CCDs helps to keep the ACIS FP and electronics within limits

POG Example: ACIS-I Imaging





S0 S1 N	S2	S3	S4	S5
	OFF1	N	N	N

Figure 6.39: ACIS-I imaging, nominal I3 aimpoint (4 Required CCDs, 1 Optional CCD)

POG Example: ACIS-S Imaging

S0 S1 N	S2	S3	S4	S5
	Y	Y	Y	N

Figure 6.45: ACIS-S imaging, nominal S3 aimpoint (4 Required CCDs, 1 Optional CCD)

Steiner (SAO)

# of	AO23	AO24	AO25
CCDs	(%)	(%)	(%)
1	7.7	1.3	1.6
2	24.1	26.9	27.0
3	9.2	8.4	2.6
4	33.9	38.3	48.7
5	15.4	14.9	15.1
6	9.8	10.3	4.9

CCD Utilization for Cycles 23, 24, & 25

Dropped CCD Statistics for Cycles 23, 24, & 25

AO	Mean Total	Mean Active	Mean Dropped	% of Obs
	CCDs	CCDs	CCDs	with
				dropped
				CCD
23	3.95	3.54	0.98	43.1
24	4.08	3.69	1.00	40.2
25	4.04	3.76	0.80	35.9

20251110

FI CCD Requirement for all observations

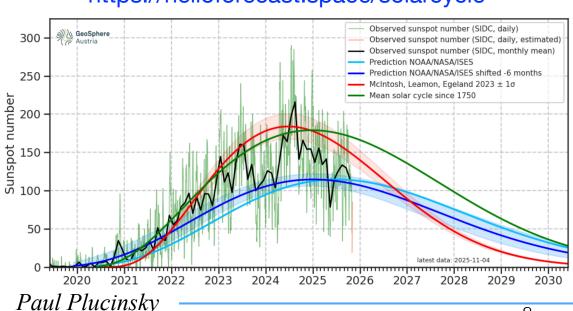
- ACIS is the only radiation monitor on Chandra now
- FI and BI CCDs respond differently to high particles, the ACIS radiation monitor is more likely to trigger if at least one FI CCD is active during an observation
- The CXC now requires at least one FI CCD to be on for GO observations

Subarray frame times assuming the subarray is in the middle of the CCD:

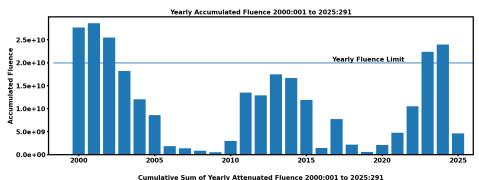
subarray	1 CCD	2 CCD	3 CCD
128 rows	0.4 s	0.5 s	0.6 s
256 rows	0.8 s	0.9 s	0.9 s
512 rows	1.5 s	1.6 s	1.6 s

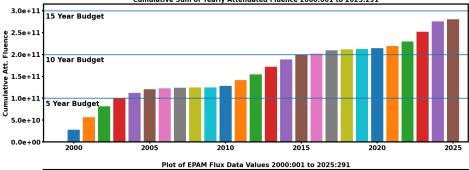
Total background rates (0.3-13.0 keV), all telemetered grades. VF mode telemetry limit is 68.8 cts/s, F mode telemetry limit is 170.2 cts/s

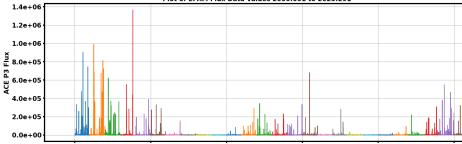
S3 (cts/s)	S3+S2 (cts/s)	S3+S2+S1 (cts/s)
6.0	10.5	22.1



ACIS Radiation Safing and Solar Cycle Progression

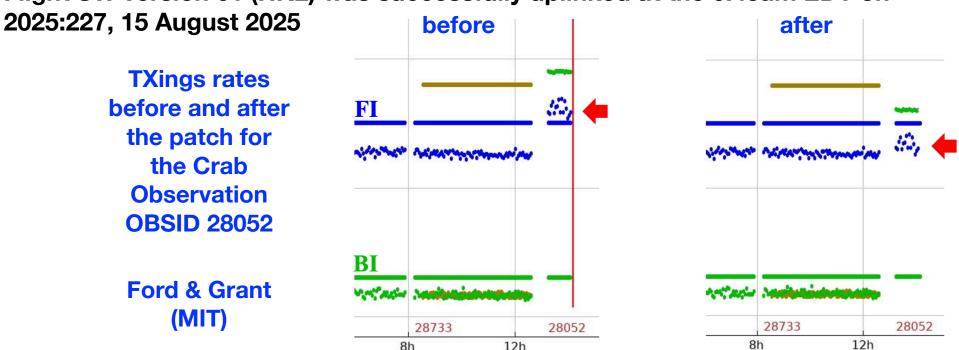

- ACIS is the only radiation monitor on Chandra.
- Autonomous safing actions are initiated by the ACIS process called "TXings".
- The peak of Solar Cycle 25 has passed. The possibility of strong storms remains.
- Observations are suspended during strong storms and ACIS is moved to a safe position.
- There have been 6 radiation safings in the past year (2 manual, 4 autonomous)
- Safing actions have been more effective in the last year due to fortuitous timing.


Solar Cycle Progression https://helioforecast.space/solarcycle



Fluence of low energy protons on ACIS

Germain (SAO)


20251110

ACIS Flight SW Update

- Flight SW updated on 15 August 2025, 9th modification since launch
- Smallest patch yet in the mission, one "patch load" was included in this update:
 - 1. Subarray with dead time TXings computation bug fix minimal GO impact
- Subarray configurations with a dead time are extremely rare, an observation of the Crab Nebula in October 2024 with S3 and S0 on inadvertently triggered TXings
- Lamarr & Ford (MIT) quickly diagnosed the bug that only affects subarray configurations with a dead time and developed a patch to fix the bug.

Flight SW version 61 (HKL) was successfully uplinked at the 6:45am EDT on

Flight SW version 61 has run for over two months without any issues.

ACIS Summary

ACIS continues to function nominally and produce high quality data

- All 10 CCDs are fully functional
- · Electronics are nominal, primary units are still in use
- No light leaks or damage due to micrometeorite impacts
- Additional absorption due to the contamination layer is well-modeled, an update is planned in the coming months
- FP temperature is maintained within limits depending on the science objectives of the observation
- · Flight software is nominal, latest version running for two months with no issues
- ~90% of GO & GTO observations use ACIS

Future Prospects:

- No ACIS anomalies in the last year, flight SW updates have minimized the impact of future anomalies depending on the anomaly
- Minimal impact from perigee minimum during 2023, impacts are decreasing as the perigee altitude increases
- FP temperature limits for observations are easier to accommodate given relaxation of other constraints
- ACIS is functioning successfully as the radiation monitor for Chandra

ACIS should continue as the workhorse instrument for Chandra for years to come