Mission Planning Updates

Scott W. Randall

On behalf of SOTMP:

Daniel Castro, Tara Dowd, Ewan O'Sullivan, Josh Robbins, Iris Wang, Josh Wing

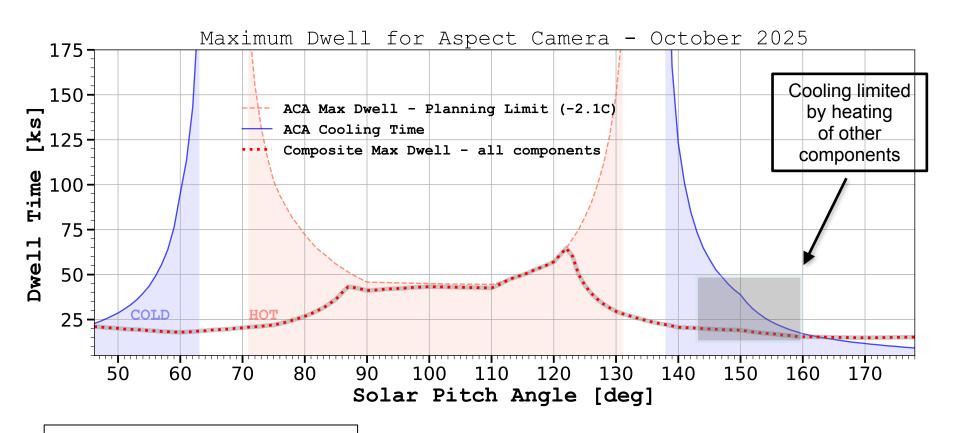
Overall Context for Mission Planning

Goal:

Maximizing the science return of the mission in the presence of constraints:


Observation constraints, e.g.,

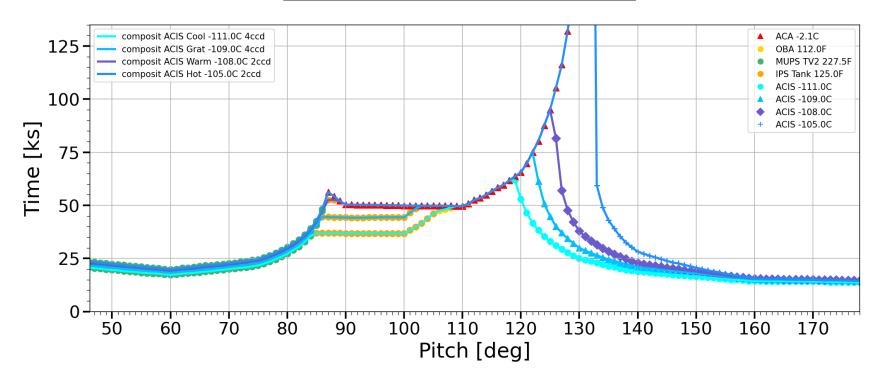
coordination
time windows
continuity of observations
monitoring series and observation grouping
roll constraints
phase constraints


Engineering constraints, e.g.,

thermal constraints
star field constraints
momentum management
Sun, Moon, Earth, bright X-ray source avoidance

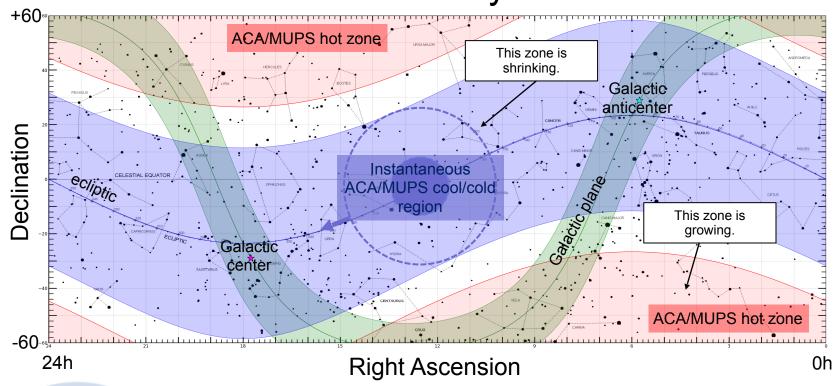
Chandra Thermal Restrictions

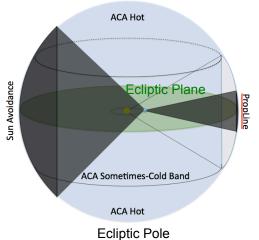
Thermal Balance: A Summary



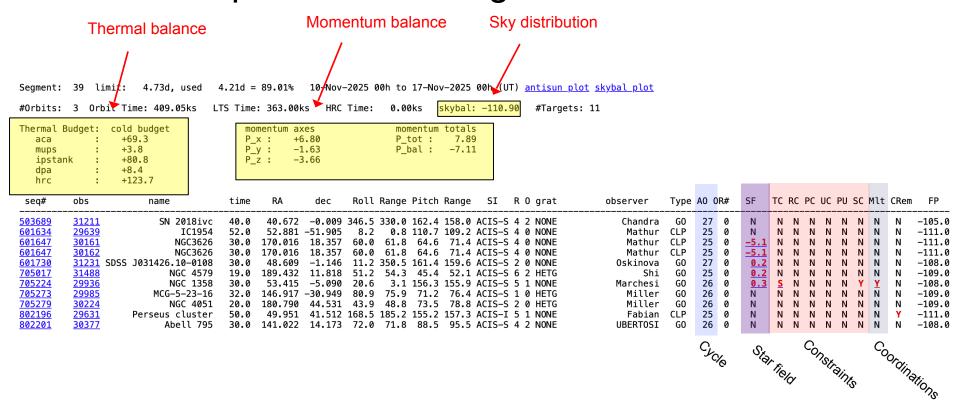
Red: maximum exposure before exceeding temperature limit (dotted is **composite** for all components).

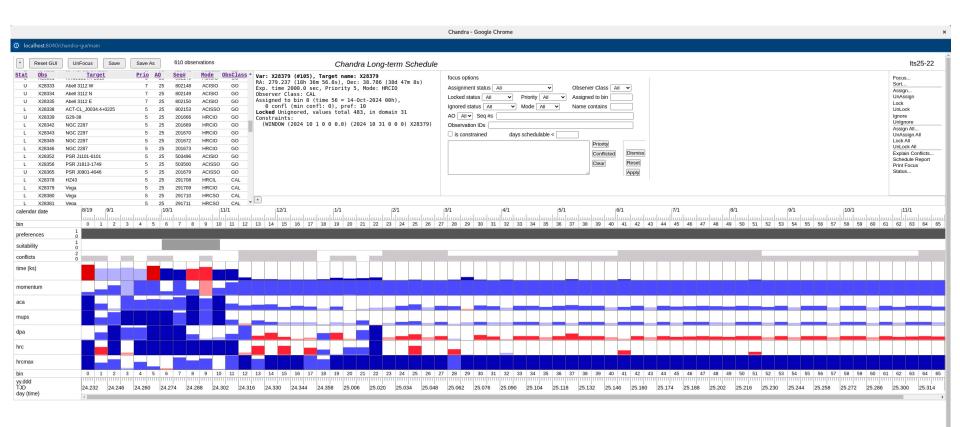
Blue: minimum cooling time required to return to state from which another max dwell possible


Thermal Balance: A Summary


Composite Maximum Dwell for September 2025

- Thermal management has largely become about balancing MUPS temperature versus ACIS FP temperature, as they heat and cool at opposite ends of the pitch extremes
- We continue to work hard to stay ahead of rising temperatures with component planning limit increases, wherever possible.

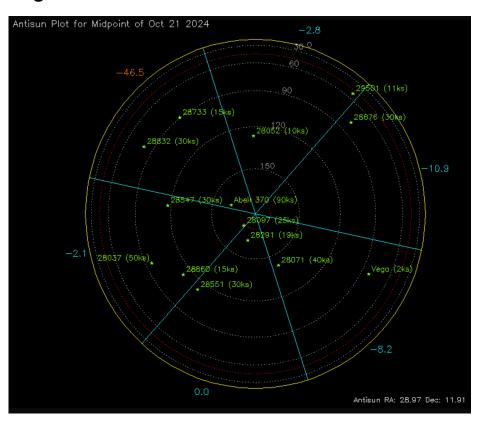

Constraints: Sky View


- The sometimes-cool/cold ACA/MUPS (-Z) region covers a band in the sky
- Although the story is no longer dominated by the ACA (rather by MUPS vs ACIS), the anti-Sun region is still extremely valuable for thermal management
- The cool region is shrinking and the hot ones are growing with time

Impact on the Long Term Schedule

- Constructing the LTS is extremely challenging. Auto-scheduling software, developed in cooperation with a software team at STScI, allowed the continued generation of efficient schedules. Additionally, the new front-end GUI significantly streamlines this process.
- Construction of the Cycle 27 LTS was completed in October, taking several weeks versus several months prior to the auto-scheduler.

New Spike GUI


• The new front-end GUI to the scheduling software is now fully implemented for nominal weekly planning. This significantly implies and streamlines the week-to-week maintenance of the LTS.

Updates

Welcome to our new Technical Assistant, Joshua Robbins!

Performance of New "Sky Balance" Metric

- Maneuvering has become increasingly important for detailed weekly planning, due to smaller observation durations and a greater number of splits.
- Previously, the sky distribution of targets in a given week was not quantitatively considered when constructing the Long Term Schedule.
- Developed a metric to quantify the "goodness" of the sky distribution of a collection of targets. The LTS is now designed to keep this metric below some (empirically determined) critical value each week.
- Continues to significantly reduce the amount of LTS time dropped per week (with the bulk of weeks with no dropped time), consistent with early results

Full Implementation Machine Readable ORLs

- We have now fully implemented a new machine-readable ORL format, built around YAML formatted key/value pairs, including new fields to codify the quality of the star field for each target throughout the week.
- This allows automated checking of most scheduling constraints during detailed weekly planning.
- It also sets the groundwork for eventually developing assistive scheduling software, which would help automate the building of weekly schedules (similar to what has been done with Spike for the LTS).

New Handling of Moving Targets

- Previously, moving target coordinates were updated manually when placed/ moved in the LTS.
- In light of recently accepted large programs on moving targets (e.g., ~1 Msec on Jupiter, 140 ks on Mars), switched to pre-computing values for each week in the thermal, momentum, and star field data bases.
- This greatly simplifies assessing the thermal and other resource impacts when considering where to place/move targets in the LTS (and allows the autoscheduler to do its job more accurately).

Dynamic Updates to Star Field Tables

- There are fairly frequent updates to the ACA dark current, star catalog, etc. the warrant updating our star field quality tables.
- This must be done for every target, on every day of the year, over a range of allowed roll angles, and is computationally expensive.
- Instead of updating all targets, we adopt an approach where we only update targets scheduled for upcoming weeks along with pool/reserve targets.
- This approach, along with significant speed improvements to our software, allows us to more accurately predict the weekly star field quality for upcoming observations.

Public Short Term Schedule Page Updates

 Minor information content updates to the public-facing Short Term Schedule Page, at the request of the Astrophysics Cross-Observatory Science Support (ACROSS) initiative, to support their efforts to streamline resources for TDAMM science.

New "Efficiency" and "Lost Science Time" Pages

- Simplifies efficiency tracking to help identify new trends more quickly
- Lost science time previously not tracked.

latest week: OCT2025

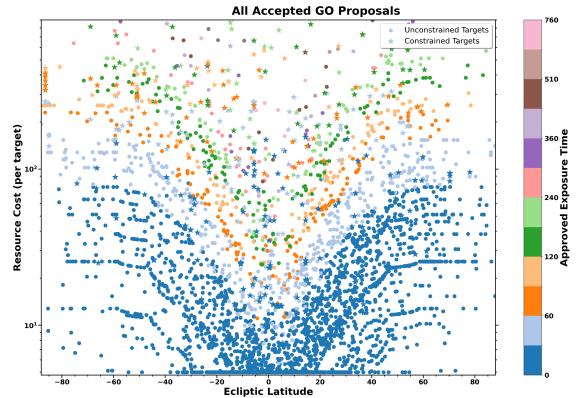
name	value
DATE START	2025-10-20
DATE END	2025-10-27
PLANNED EFF	0.829
CORRECTED EFF	0.829
WALLCLOCK EFF	0.627
RADZONE [ks]	147.6
INTERRUPT [ks]	0.0
ORBIT TIME [ks]	457.2
AST [ks]	400.6
OBS TIME [ks]	379.2

thermal model balances				
aca	mups	fp+dpa	hrc	
131.3	15.8	72.0	78.8	

last 10 weeks AUG1825 - OCT2025

Efficiency Dashboard (partial)

week	planned efficiency	wallclock efficiency	interrupt time	anticipated science time*	observation time
AUG1825	0.919	0.725	0.0	418.1	438.6
AUG2525	0.91	0.713	0.0	415.6	431.5
SEP0125	0.877	0.622	101.5	376.0	376.3
SEP0825	0.858	0.665	0.0	410.4	402.0
SEP1525	0.883	0.678	0.0	406.6	409.9
SEP2225	0.858	0.717	0.0	442.9	433.8
SEP2925	0.835	0.632	0.0	401.0	382.2
ОСТ0625	0.897	0.681	0.0	402.2	411.8
OCT1325	0.896	0.749	0.0	442.9	453.1
OCT2025	0.829	0.627	0.0	400.6	379.2

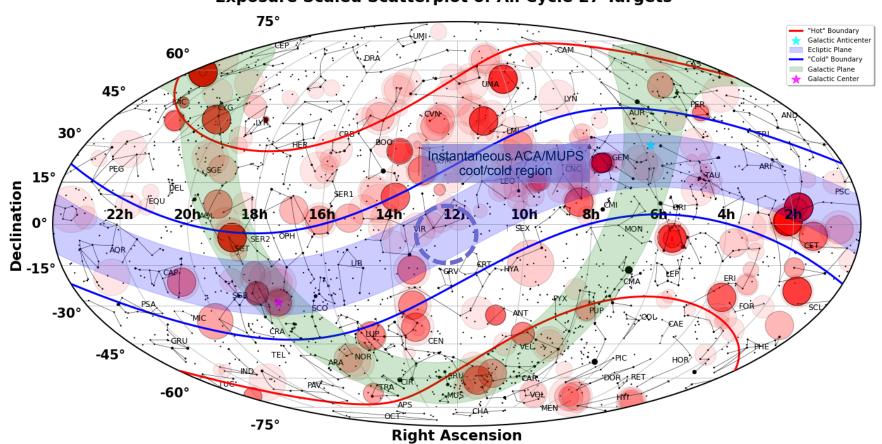

anticipated science time is the total amount of time we expect Chandra to spend doing science observations over the given time period. It is calculated by estimating the amount of time Chandra will spend outside of the radiation zone and multiply it by the planned efficiency over the last 4 months

Lost Science Time Page (partial)

Observations that did not meet science requirements. - Time lost by having to repeat an observation due to a "non-shutdown" anomaly, or incorrect scheduling. Also included in this table are CCT observations canceled because science requirements were not met.

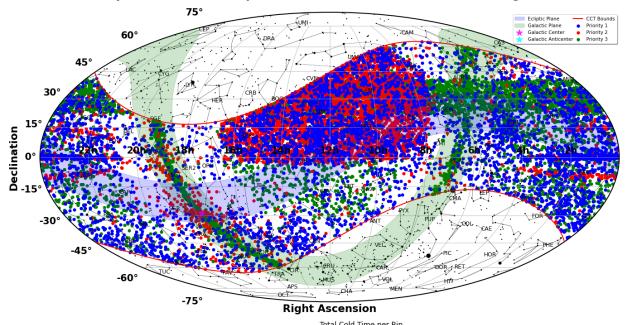
Original Proposal	ObsID	Target Name	Scheduled Time Lost [ks]	Short Schedule Time	Notes		
<u>26309059</u>	<u>31036</u>	EP250630b	2	Aug 13 2025 1:43PM	DDT target of opportunity observed at incorrect coordinates (as provided by proposal team because of an error in the Astronomer's Telegram detailing the transient detection)		
26800462	<u>29619</u>	A1795	23.3	Jun 12 2025 02:46PM	Observation affected by the June 12 2025 SSR Dump data corruption issue		
<u>26200216</u>	<u>30459</u>	Eta Car	14.5	Jun 12 2025 10:05AM	Observation affected by the June 12 2025 SSR Dump data corruption issue		
25700279	<u>29619</u>	NGC 4579	18	Jun 12 2025 01:20AM	Observation affected by the June 12 2025 SSR Dump data corruption issue (11ks recovered from a total 29ks)		
25700269	<u>28203</u>	FRB20220914A	17	Jan 12 2025 09:52AM	Observation affected by the January 2025 LETG extraction issue		
<u>26800045</u>	30375	Abell 795	18	<u>Jan 12 2025</u> <u>04:17AM</u>	Observation affected by the January 2025 LETG extraction issue		
25200530	<u>28953</u>	TW Hya	5	May 05 2024 03:17PM	Coordination constraint with JWST and HST, not met because HST went into safe mode due to a gyro failure		
20401069	<u>28975</u>	4U 1908+075	10	Oct 22 2023 12:01PM	Cool Catalog Target observation observed with incorrect coordinates (this CCT was canceled)		
22400405	24520	4U 1916-053	10	Sep 01 2021 07:47AM	Observation affected by the September 2021 LETG insertion issue		
22400529	23469	M82 X-2	5	Aug 31 2021 11:49PM	Observation affected by the September 2021 LETG insertion issue		
14620812	14528	Mkn 766	5	<u>Jul 06 2014</u> <u>10:11PM</u>	Originally scheduled as an observation of NGC1399 - spacecraft attitude was not as expected and not in agreement with the science instrument configuration (discovered during the 187:2220-2320z comm)		

Resource Cost


- Introduced in cycle 22.
- Replaces "constraint categories" (easy/average/ difficult) used in previous cycles.
- Calculated for all non-TOO targets.
- On current (arbitrary) scale, peer review assigns total cost ~27,000.
- For Cycle 27: minor fixes, and pitch weighting changes to not as strongly disfavor HEL targets.

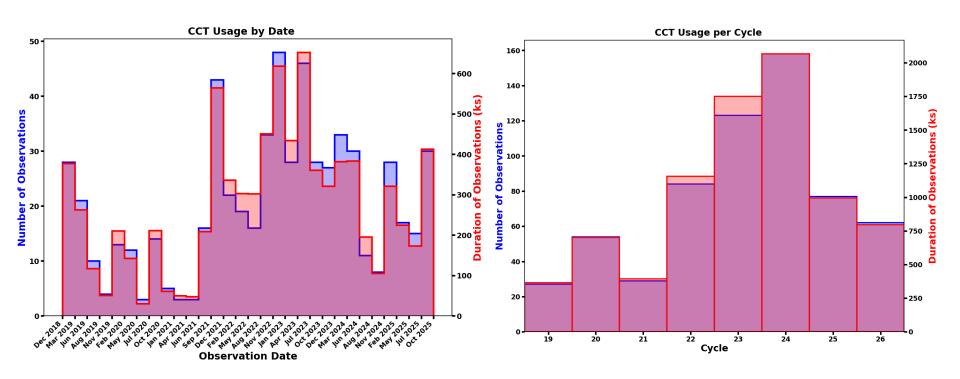
Resource Cost (RC) values for observing programs from *Chandra* Cycles 14-27. Starred targets have science observing constraints, circles are unconstrained.

- Prototype resource-cost-like scoring for TOOs continues.
 - Currently only the number of triggers by category are tracked, so a fast 100 ks TOO is equivalent to a fast 1 ks TOO.
 - Prototype already useful in highlighting difficult or infeasible TOO proposals

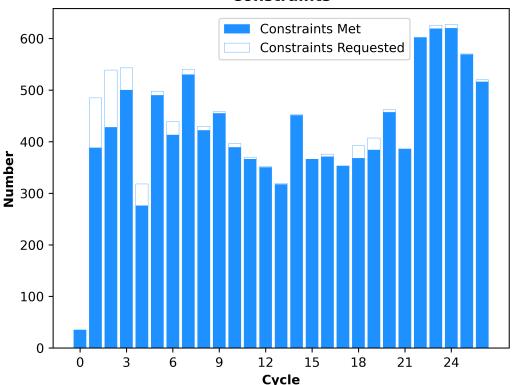

Target Distributions



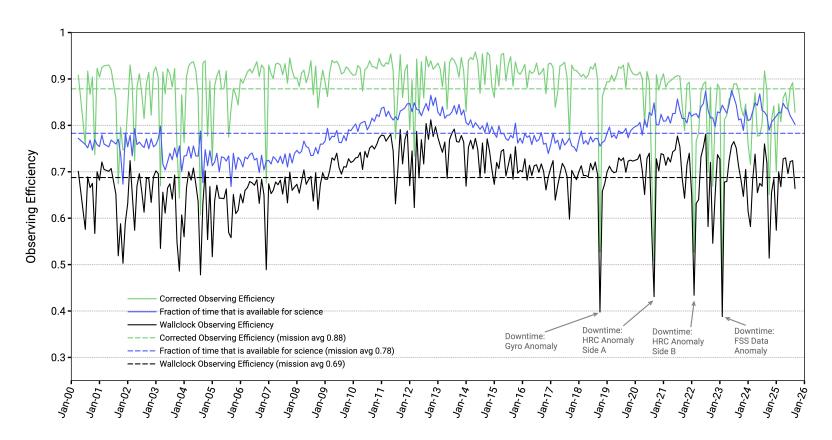
Chandra Cool Targets (CCTs)



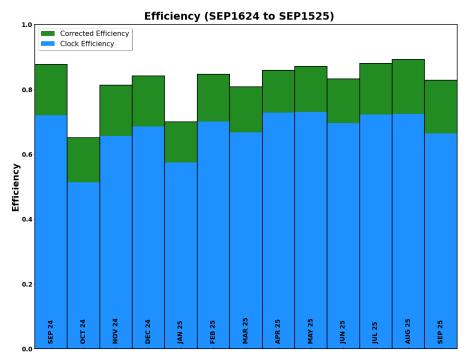
- Implemented in 2019
- 22 programs: galaxy clusters, ULXs, quasars, AGN, HMXBs, CVs, SFRs, cool stars, survey counterparts, radio galaxies, star clusters, Fermi sources, dwarf galaxies, symbiotic stars
- 10 ks \leq t \leq 35 ks; |b| < 40°
- ~19,000 targets, ~397 Ms, with 5Ms conflicted (~384 Ms remaining)

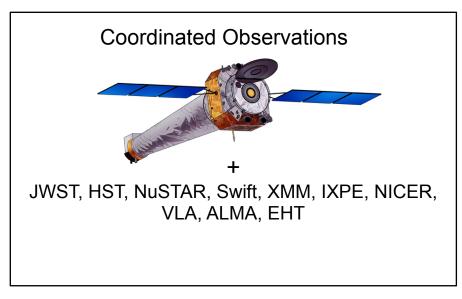

Adequate remaining cooling time in any week

Chandra Cool Targets (CCTs)


CCT usage "spike" in Cycles 22 - 24, likely driven by recovery from operational events (e.g., HRC power anomaly, IU reset, Fine Sun Sensor issue), and by large programs with particularly difficult star fields observed prior to the ACA flight software patch

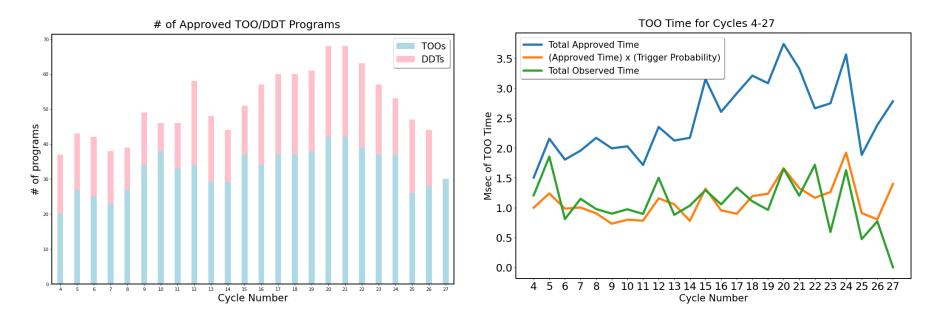
Science Constraints


- Difficulty associated with meeting constraints is increasing due to spacecraft thermal limitations (e.g., decrease in maximum dwell times, increasing number of star field constrained targets).
- However, we continue to meet approved observing constraints successfully.
- Most missed constraints are due to solar flares and other operational events that lead to schedule interruptions.


Mission Efficiency History

- The "corrected efficiency" (the fraction of available science time we spend observing, green line) has dropped somewhat in recent years. This is largely driven by shorter observation durations (which means more maneuver time), and the use of "intermediate attitudes" to help mange thermal issues.
- Nonetheless, the corrected efficiency remains high, and on par with historical values.

Observation Scheduling



- From Sep. 16, 2024 Sep. 15, 2025:
- Scheduled: 1415 observations (21.3 Ms)
- Executed:
 - 35 TOO observations (690 ks)
 - 35 DDT observations (618 ks)
 - interrupted 6 operating loads for TOO/DDT support

- Chandra Coordinations (Sep. 16 2024 Sep. 15 2025):
 - 66 observations for 1.24 Ms

TOO/DDT Observations: Historical Performance

Historical TOO/DDT performance has been very steady despite evolving thermal constraints.

- This has been done by continued development of tools and procedures, and this process continues for both regular planning and TOOs.
- We anticipate continued support at levels similar to historical levels

Future Issues

- We have begun tracking a new thermal component for the fine sun sensor (FSS). Currently not a limiting factor, but likely to become limiting in the next year or so.
- The tank model has very recently become the limiting factor in a narrow range of pitch angles. We have one more limit increase before we hit the caution limit. Potentially raising the limit higher would require detailed investigation.
- Continuing to track ObsID usage. We're likely to "run out" of ObsIDs as early as 2030 (worst case). Will need to investigate solutions starting a few years prior to this.
- HRC investigation and recovery, with scheduling adjustments.
- Further updates for public-facing data to further support the ACROSS initiative (e.g., JSON)
- Make the TOO RCC official?

Summary

- The overall temperature increase of Chandra continues to limit the amount of time we can observe at any given solar pitch angle, due to the temperature limits of the various components.
- This complicates both constructing the Long Term Schedule and detailed weekly planning, e.g., due to component temperature limits, and increases in the detection threshold of the aspect camera.
- The effects of this heating are mitigated, as much as possible, by several proactive software, procedure, and policy changes.
- Despite increasing challenges, observing metrics remain favorable, with observing efficiency, TOO/DDT response, and science constraint compliance that are on par with mission history.
- There are no known barriers to the continued successful and efficient operation of Chandra for years to come.

Backup Slides

Star Field Constrained Targets

- Increased aspect camera temperatures means a higher detection limit for guide stars
- Some star fields have become extremely difficult to do, with narrow yearly windows (roll angle ranges) when they are observable
- These "star field constrained" targets make up the majority of our most difficult programs to schedule
- The aspect camera flight software was patched in May 2023 to use new dynamic background algorithm, improving sensitivity for guide stars. The effect is equivalent to 1-1.5 degree cooling, a significant benefit for planning
- However, the problem will worsen over time, with some star fields expected to become unobservable in the near future

Star Field Checker Tool

- Star field checker webtool was released for AO 25
- Fewer proposals with difficult star fields were submitted
- Processing time and memory usage per target is non-negligible, raising issues if large numbers of targets submitted at once (e.g., if incorporated in CPS and many proposers use it just before deadline)
- Queueing system, target list input, and inclusion in CPS all in development for next year

TFTE Heater Set-point Change

- It was realized that lowering the set-point temperature for the Telescope Forward Thermal Enclosure (TFTE) heater provided unexpected thermal relief for the ACA.
- New set-point temperature was quickly implemented
- This likely "recovered" 1-2 years worth or nominal ACA heating

ACIS Heater Set-point Investigation

- ACIS investigated the potential benefits of lowering the set-point at which the ACIS heater turns on. If the ACIS focal plane is allowed to reach a lower temperature, then the maximum dwell time after reaching this lower limit may be improved.
- After a detailed investigation, it was determined that exploratory observations would be required to answer this question definitively
- Unfortunately, this study found that lowering the ACIS set-point temperature did not significantly improve subsequent max-dwell capabilities

History of recent thermal limit changes

Model	Date of most recent update	Planning limit relaxations in past year
ACA	2022 Feb	- 5.8 C -> -5.2 C
MUPS	2020 Apr	210 F Limit Unchanged
OBA	2022 Jan	Non-LETG Limit unchanged 103 F Separate LETG limit 102 F
Tank	2021 Oct	115F -> 120 F
PLINE	2020 May	50 F Limit Unchanged
DEA	2022 May	37.5C -> 38.5 C
ACIS FP	2022 Nov	ACIS-I: -112C -> -109 C* ACIS-S: -111C -> -109 C* *when calibration allows

Sample of Significant Planning Efforts

Completed in Cycle 23:

- Sgr A* 100 ks, including
- Tightly coordinated with the EHT
- Galactic Center mosaic 1.7 Msec: CMZ Molecular Cloud 900 ks
 - 2.6 Msec all in the same part of the sky (same "good" and "bad" pitch windows)
- Abell 2029 150 ks
 - Extremely difficult star field
 - No workable "first order" solution, at any temperature. Required special consultation with the ACA team.
 - Ultimately led to very tight observing windows with extra ACA cooling.
- QSO J0041-4936 150ks; PSZ2G358.98-67.26 4.9 ks; 2MASX J15114125+0518089 60 ks
 - All severely star field constrained, difficult to schedule, with short allowable windows
- B1152+199 50 ks
 - 5 x 10 ks, monitor series with a monthly cadence that also has a difficult star field.

Sample of Significant Planning Efforts

Coming Up in Cycle 24:

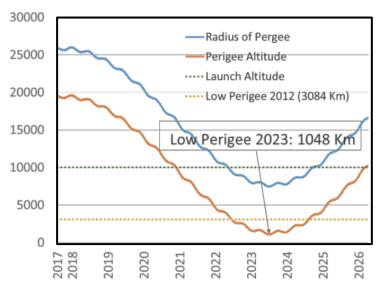
- Sgr A* 100 ks
- Tightly coordinated with the EHT
- •Abell 2029 275 ks; SIG A2029 170ks:
- Extremely difficult star field
- QSO J0041-4936 500ks; MCXCJ0216.3-4816 25ks; SDSS J114907.15+004104.3 3.1ks
 All severely star field constrained, difficult to schedule, with short allowable windows
- Some likely challenging approved Cycle 24 TOO programs

Note that the story regarding the toughest programs to schedule has largely become about "star field constrained" targets

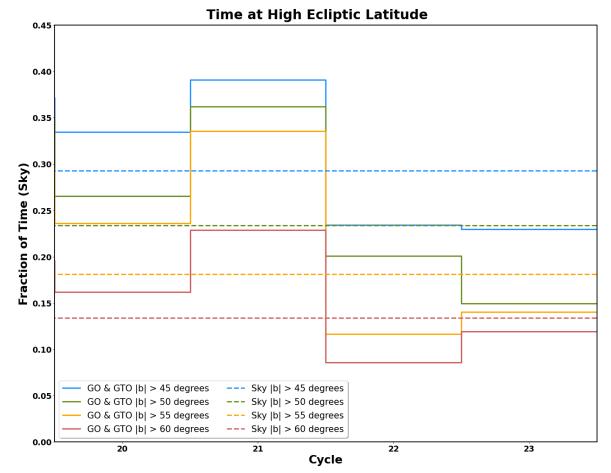
TOO/DDT Responses and Planning

- Very Fast TOO response times could be delayed by up to10 hours beyond historical times in order to pre-cool.
- Anti-TOOs are TOOs
 - Pulling a TOO or its follow-up after scheduling requires a similar effort as starting a new TOO.

- Approach to TOO follow-ups has been changed effective cycle 22
 - Now, follow-ups schedulable at time of trigger count as ½ trigger against the cycle quota; follow-ups that depend on results of an earlier TOO are proposed as separate TOOs
- TOO/DDT programs delay GO observations.
 - Harsh reality is that bumped targets can no longer routinely be rescheduled into a nearby week.

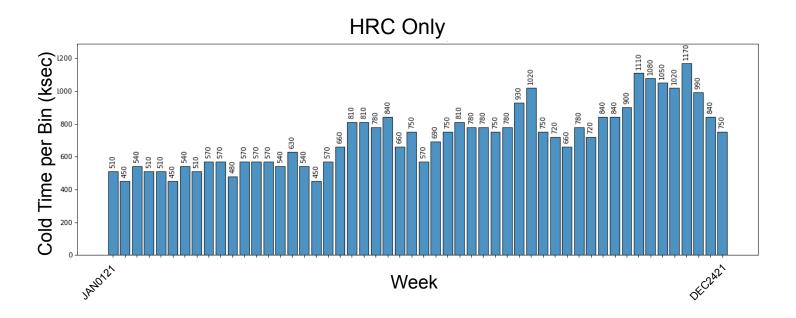

TOO/DDT Observations: Planning Impacts

Snapshot of Planning Process

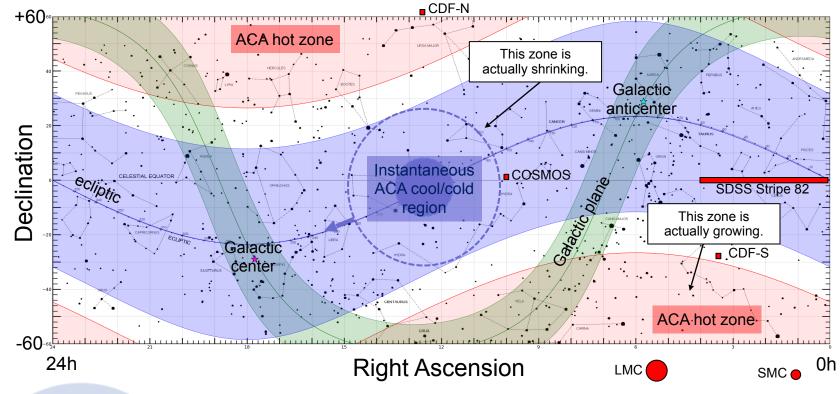

Week	Monday	Tuesday	Wednesday	Thursday	Friday			
Schedule Planning	SOTMP Rev	iews LTS Bin	Preliminary Schedule Build					
	On-call for previous week's loads, performing all FOTMP Reviews							
Preliminary Schedule	Finalize Prelim	inary Schedule	Internal FOTMP Prelim Review Rebuild Prelim*	ACA Pre-review of Prelim Rebuild Prelim*	Deliver Prelim to SOTMP SOTMP Review			
Schedule Review	SOTMP Delivers Final ORL Official Loads FOT Builds Final Schedule FOTMP Review		Loads Released for Review Load Review	Subsequent Load Builds and Load Reviews, if necessary.				
Schedule Running	LOADS ONBOARD AND RUNNING (Planner who built loads is on-call, performing all FOTMP reviews, and already starting the next schedule's first week)							

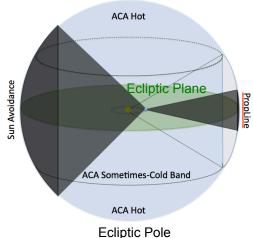
Momentum Management

- Chandra will reach its lowest perigee altitude in 2023, requiring an increase in the use of the thrusters to unload momentum.
- Degradation of the A-side thrusters was observed after ~700 "warm starts", resulting in a switch to the B-side thrusters in 2013.
- Goal is to budget warm starts to stay under this limit of 700 through lowperigee.
- Developed software to estimate the momentum accumulation per axis for any observation, allowing the "momentum balance" to be calculated for every week.
- Momentum is now balanced week by week when laying out the LTS, as is done for thermal.


Target Distribution: Cycle 22

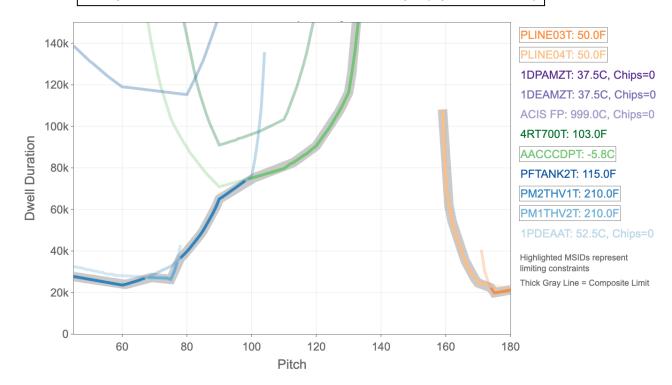
 Due to "catching up" with time from earlier cycles and the decreased relative importance of ACA heating, we may be able to increase the time limit on high latitude targets, but low-latitude time is still crucial for cooling.


- For several cycles, the CXC has been limiting high ecliptic latitude time in large programs only.
- This has not proven adequate: target times at high β have ended up above their proportionate share of sky area.
- Consequences include very long (~6 month) LTS development times and programs that extend far into subsequent cycles.
- Cycle 22+, with high-latitude time limited for all targets, finally achieves high-latitude target times somewhat below their proportionate sky area.


Chandra Cool Targets (CCTs)

- Recall that cold HRC observations are particularly useful for thermal management, since ACIS is the main limiting factor at high pitch angles.
- There is a good amount of HRC cold time per week remaining in the CCT program.
- However, **all** of these remaining observations are 30 ks, which is typically longer than desired for nominal planning, since it can unnecessarily displace time from GO programs or unbalance the ACIS heating budget for the week.

Constraints: Sky View



- Sometimes-cool/cold ACA (-Z) region covers large sky area.
 - Many well-known fields can provide some cooling; others always heat the ACA.
 - The cool regions are shrinking and the hot ones are growing.

Future Thermal Needs

Composite Maximum Dwell with No ACIS Chips (Aphelion 2022)

- Most limiting components cool at high pitch angles, except ACIS.
- Therefore, turning off all ACIS chips greatly increases the maximum dwell at high pitch angles (limited at the highest pitch angles by the propulsion lines)

- This means that HRC observations are especially useful for cooling most thermal components (and useful at other pitch angles for cooling ACIS).
- We expect HRC observations to become more and more useful as the global average temperature of the spacecraft continues to rise.