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Radiatively Inefficient Accretion Flows (RIAFs)

* RIAF in theory

. l”;\<r;‘\c,«if = few x 10”7 (r;'\=/\./\acc//\./\5dd, MEdd:IO% Legq €°
Ledd=4mGMphcmp/oT)

* trad >> Tdyn, weak radiative cooling, energy advection (ADAF,
Narayan & Yi 1994)

* Accretion flow — geometrically thick and optically thin +
accretion flow dynamics decoupled from radiation

» collisionless plasma— Tp/T, I= 1

e RIAF in practice, BH systems with L <« Lgq4q
» quiescent 6GN: Sgr A* (L/Lgqq=10")
» BLLac/FRI: M87 (L/Lgq4q=10">°)

* many hearby galactic nuclei, BHB in quiescent state



Outline

* Numerical realization of RIAF models (GRMHD simulations)

* Radiative properties of RIAFs from Monte Carlo simulations
* application tfo Sgr A*

* Non-equilibrium electron-positron pair production in the jet (magnetized funnel)
s y+y—>e +e
* pair production is balanced by pair escape rather than pair annihilation

Goals

* Understand physics of accretion in underluminous X-ray sources such as Sgr A*

* Understand composition of jets and conditions to produce jets
* during RIAF phase
* during transition from RIAF to efficient accretion mode
* Selfconsistent model of accretion disk and jet



Accretion disk model - initial setup
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* Equilibrium torus (Fishbone & Moncrief 1976, Abramowicz et al. 1978) + weak magnetic

field

* MHD equations solved with HARM (2D Gammie et al. 2003, 3D Noble et al. 2006, 2009),

conservative, shock capturing scheme to solve GRMHD eq,

- radial range = ry, - 40 Ry (Kerr -Schild coordinates-no singularity at ry)




Accretion disk model - later times

Censity Magnetic field Temperature
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* All simulations show a similar, statistically steady final state
* We assume that the inner parts of this torus are the inner parts of large RIAF
* Scaling depends on My, and Mg



Model comparison to observation - radiative transfer

* Monte Carlo technique for radiative transfer:

* Generate photon E=hv and p’" based on the emissivity of the physical
radiative process

* trace individual photons to the observer

* Important emission processes in RIAF:

* synchrotron radiation (relativistic thermal distribution of electrons)
* Compton scattering

* Absorption

* All relativistic effects are included: photons move on geodesics, Doppler
boosting, gravitational redshift etc. (Dolence et al. 2010)



Observations of Sgr A* ( Mpp=4 10° M3X)

* Quiescent emission (radio, sub-mm NIR X-rays) + flares (NIR and X-rays)
* VLBT size of emission at 1.3 mm FWHM=37 pas , apparent size of horizon 55uas
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Emission from turbulent disk from Monte Carlo
radiative transfer

Emissien at 230-£830 GHz Emission at 2—10 g m Emissicn at 2-8 keV
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Origin of photons at different frequencies,
Moscibrodzka et al. 2009
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SEDs (vs. radio, NIR and X-ray) Images (vs.VLBI observations)
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* '‘Best-bet' model for Sgr A* gives a=0.94, Tp/Te=3, i#90 deg, m=10"

* a* <0.94 and Tp/Te=1 give poor fit to sub-mm observations

* a* 0.94 overestimate X-rays observations

* Tp/Te > 3 wrong sub-mm slope, overestimate NIR and X-rays + produce too large images



What are the physical conditions in the funnel ?

Magnetic field Temperature

* In the funnel matter free to fall out
* numerically — floor density
* What is real density in the funnel?
* In nature funnel density in LLGN determined by yy pair production (Phinney 1983)
* What is the actual pair production ?



Electron-positron jets - how many pairs do we expect?

* We do not expect much of pairs to be created at all (compactness
parameter, or optical depth to pair production, is small | =Lo;n/Rmec

~ 107 «1)

3

* nh./.=nSoyy C, crosssection for y+y=e'+e” (Breit-Wheeler)
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* Estimate of pair plasma density
* ny=Ly/mMc’R?, tosc=R/c, R~GMpp/c?
(pair production balanced by escape)
« Sgr A*:.n,;=10"%cm?

e M87:n,,=10* cm

NASA, NRAO and J. Biretta (STScl) * STScl-PRC99-43

0.1 lyr =1000 Rg Mbh=3 10° My n.,.=1 cm™
Problem is particularly interesting in case of M87

With Monte Carlo radiative transfer we can do better job |



e’ pair production-Monte Carlo method

* Monte Carlo techniques i
allow to follow collisions ‘
between individual photons -
(photon packets)
everywhere

z [G M/c?]

* Pair production opacity
assumed small

* We need to store I
information about the
radiation field above 1 MeV i

(in the center-of-
momentum frame)

hv > 1 MeV photon trajectories in the
jet, Gammie 2009, private com.



e’ pair production rates in RIAF

e” pair production rate |

* Disk turbulent but at a given time
radiation field is smooth, pair prod.
distribution is smooth

* Individual rays is Monte Carlo noise

* Beaming effects — most of pairs created
in the disk plane, p = cos(6)

: —6_—u2/0.4
fy (1, ) ~ r~8e /0

10-20% created in the magnetically
dominated funnel



_ pair_production - dependence on observables

and model parameter
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e’ pair production - dependence on model parameters
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Mass accretion rate vs. time at later times of simulation



e'’” pair production - observational consequences

* Can we see emission from pairs? To calculate SED :
* need pair density and distribution of pair kinetic energy
* so need to solve dynamical equations of the pair plasma (in preparation)

Sgr A*
* During quiescence - small number of pairs
« During strong X-ray flare ( Lx= 10*ergs/s) — arising compact pair jet?
e activity in the past Lx=10°" ergs/s - might have produced stronger pair

jet in the past
M87
 number of pairs slightly larger than observed one: n,;.=100 cm™
* need to couple dynamics with radiative transfer (in preparation)
* pair production suppressed by cooling



Summary

We model inefficient accretion onto spinning black holes using GRMHD
simulations, we model multiwavelength (radio-gamma rays) radiative
properties of GRMHD simulations using GR Monte Carlo techniques

We have models of Sgr A* quiescent emission (Moscibrodzka et al. 2009)
and variability (Dolence et al. 2010, in press), a*=0.94, Tp/Te~1, i=90 3

For first time we compute non-equilibrium electron-positron pair
production rates by yy from turbulent accretion disk around spinning
black hole

Production of pairs sensitive to X-ray luminosity, very sensitive to mass
accretion rate and spin of the BH

More to be done in near future !



END



Test of pair production code
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* 3D Cartesian space, 2 point sources of high energy radiation
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