The X-ray corona of Cyg X-1

Julien Malzac (CESR/CNRS, Toulouse, France)

Outline

1. Black hole X-ray spectral states: observations and models

2. A numerical kinetic/radiation model for state transitions

3. Comparisons to spectra of Cygnus X-1

4. Applicability of hot accretion flow models to Cygnus X-1

5. Toward a multi-zone corona model

High energy emission of Cygnus X-I

Zdziarski et al 2003

High energy emission of Cygnus X-I

LOW HARD STATE: (compact radio jet) disc blackbody and reflection: weak /

Corona: THERMAL Comptonisation

HIGH SOFT STATE:

disc blackbody and reflection: strong

Corona: NON-THERMAL Comptonisation

Hybrid thermal/non-thermal comptonisation models

Comptonising electrons have similar energy distribution in both states: Maxwellian+ non-thermal tail

HARD STATE: $kT \sim 50-100 \text{ keV}$, $T_{T} \sim 1-3$: Thermal comptonisation dominates

SOFT STATE: $kT \sim 10-50 \text{ keV}$, $T_{T} \sim 0.1-0.3$: Inverse Compton by non-thermal electrons dominates

Lower temperature of corona in soft state possibly due to radiative cooling by soft disc photons

Hybrid thermal/non-thermal comptonisation models

Comptonising electrons have similar energy distribution in both states: Maxwellian+ non-thermal tail

HARD STATE: $kT \sim 50-100 \text{ keV}$, $T_{T} \sim 1-3$: Thermal comptonisation dominates

SOFT STATE: $kT \sim 10-50 \text{ keV}$, $T_{T} \sim 0.1-0.3$: Inverse Compton by non-thermal electrons dominates

Lower temperature of corona in soft state possibly due to radiative cooling by soft disc photons

Hybrid thermal/non-thermal comptonisation models

Comptonising electrons have similar energy distribution in both states: Maxwellian+ non-thermal tail

HARD STATE: $kT \sim 50-100 \text{ keV}$, $T_{T} \sim 1-3$: Thermal comptonisation dominates

SOFT STATE: $kT \sim 10-50 \text{ keV}$, $T_{T} \sim 0.1-0.3$: Inverse Compton by non-thermal electrons dominates

Lower temperature of corona in soft state possibly due to radiative cooling by soft disc photons

GX 339-4 during the 2004 state transition

- Smooth transition from thermal to non-thermal Comptonisation
- Fits with hybrid thermal/nonthermal models (EQPAIR) during the Hard to Soft transition:
- softening driven by dramatic cooling of the coronal electrons by soft disc photons

INTEGRAL

Del Santo, Malzac, Jourdain, Belloni, Ubertini, MNRAS, 2008 see also Joinet et al. (2007), Belloni et al. (2006),

Standard picture: truncated disc model

LOW HARD STATE

cold disc truncated at ~ 100-1000 Rg + hot inner accretion flow

 \Rightarrow Thermal comptonisation in the hot (10^9 K) plasma

(Shapiro, Ligthman & Eardley 1976; Rees et al. 1982; Narayan & Yi 1994, Abramowicz et al. 1995, Esin et al. 1997, Yuan & Zdziarski 2004, Petrucci et al. 2010...)

HIGH SOFT STATE

cold geometrically thin disc down to the last stable orbit + weak non-thermal corona

- \Rightarrow dominant thermal disc emission
 - + non-thermal comptonisation

Alternative models for the hard state

Accretion disc corona outflowing with midly relativistic velovity above a cold (i.e. non-radiating) thin disc

(Beloborodov 1999; Malzac Beloborodov & Poutanen 2001)

X-ray Jet Models

(Markoff et al. 2001,2005; Reig et al. 2003; Giannios et al. 2004; Kylafis et al. 2008)

Alternative models for the hard state

Accretion disc corona outflowing with midly relativistic velovity above a cold (i.e. non-radiating) thin disc

(Beloborodov 1999; Malzac Beloborodov & Poutanen 2001)

X-ray Jet Models (Markoff et al. 2001,2005; Reig et al. 2003; Giannios et al. 2004; Kylafis et al. 2008)

> although X-ray jet seems unlikely in Cyg X-I (see Malzac, Belmont & Fabian, MNRAS, 2009)

BELM: a code to model radiation and kinetic processes in the corona

Evolution of electrons and photon energy distributions in a fully ionised, magnetised plasma (radiation, acceleration and Coulomb processes)

Solve coupled time-dependent kinetic equations for leptons and photons (no assumption on the shape of the electron distributions)

Compton, Synchrotron emission and absorption, e-e and e-p Coulomb, e+-e- pair production/annihilation, e-p bremstrahlung

(Belmont, Malzac & Marcowith, A&A 2008)

The Synchrotron boiler

(Ghisellini, Guilbert and Svensson 1988)

Electrons injected with γ =10 in an empty (but magnetised) region Synchrotron self-Compton emission

High energy e- -> synchrotron photons -> self-absorbed by lower energy etransfer of energy between particles (+) 'thermalizing' effect on the electron distribution

At steady state: hybrid thermal/non thermal lepton distribution

(Belmont, Malzac & Marcowith, A&A, 2008)

Pure non-thermal SSC models (steady state)

Magnetic field B at ~equipartition with radiation, $l_{\rm B}=(\sigma_{\rm T}/m_{\rm e}c^2)$ R B^2/(8 π)

- Continuous POWER-LAW electron injection $\Gamma_{inj=3}$, $l_{nth}=(\sigma_T/m_ec^3)$ L/R
- Cooling and thermalisation through synchrotron self-Compton + e-e Coulomb

Equilibrium distribution: Maxwellian+ non-thermal tail
 spectra look like hard state !

Pure non-thermal SSC models (steady state)

Magnetic field B at ~equipartition with radiation, $l_{\rm B}=(\sigma_{\rm T}/m_{\rm e}c^2)$ R B^2/(8 π)

Continuous POWER-LAW electron injection $\Gamma_{inj=3}$, $l_{nth}=(\sigma_T/m_ec^3)$ L/R

Cooling and thermalisation through synchrotron self-Compton + e-e Coulomb

Equilibrium distribution: Maxwellian+ non-thermal tail
 spectra look like hard state !

Effect of external soft photons

temperature of Maxwellian electrons decreases

Compton emission increasingly dominated by non-thermal electrons

Iooks like a state transition!

Effect of external soft photons

Add soft thermal photons:

temperature of Maxwellian electrons decreases

Compton emission increasingly dominated by non-thermal electrons

Iooks like a state transition!

Comparisons to Cygnus X-I spectra

(Malzac & Belmont MNRAS 2009 ; Poutanen & Vurm 2009)

Comparisons to Cygnus X-I spectra

Both states consistent
 with pure non-thermal
 acceleration models

 Different coronal temperatures due to more cooling by thermal disc photons in Soft state

Comparisons to Cygnus X-1 spectra

Both states consistent
 with pure non-thermal
 acceleration models

 Different coronal temperatures due to more cooling by thermal disc photons in Soft state

If B is large:
 ➡non-thermal electrons generate too much synchrotron
 ➡Maxwellian electrons are too cold

weak (i.e strongly sub-equipartition) magnetic field
 corona unlikely to be powered by magnetic field

(Malzac & Belmont MNRAS 2009; Poutanen & Vurm 2009)

In addition to non-thermal acceleration we now assume that electrons are heated through Coulomb interactions with a population of hot thermal protons (two-temperature plasma):

In addition to non-thermal acceleration we now assume that electrons are heated through Coulomb interactions with a population of hot thermal protons (two-temperature plasma):

Good agreement with data
 but non-thermal electron injection is required in
 both Low Hard and High Soft states

In addition to non-thermal acceleration we now assume that electrons are heated through Coulomb interactions with a population of hot thermal protons (two-temperature plasma):

Good agreement with data
 but non-thermal electron injection is required in
 both Low Hard and High Soft states

Temperature of hot protons in hard state: $Ti < 2 \ 10^{10} \ K \ or \ T_i/T_e < 10$

proton temperature much lower than standard two-temperature accretion disc solutions

In addition to non-thermal acceleration we now assume that electrons are heated through Coulomb interactions with a population of hot thermal protons (two-temperature plasma):

Good agreement with data
 but non-thermal electron injection is required in
 both Low Hard and High Soft states

Temperature of hot protons in hard state:
Ti < 2 10¹⁰ K or T_i/T_e<10</p>

proton temperature much lower than standard two-temperature accretion disc solutions

Similar constraints on B and T_i obtained for GX339-4 in a bright hard state (Droulans et al. 2010)

Solution Local flow thermal balance: $Q_{vis} = Q_{ie} + Q_{adv}$ $Q_{vis} = -\alpha P_{gas} R \frac{d\Omega}{dr}$ $Q_{vis} = -\alpha P_{gas} R \frac{d\Omega}{dr}$ $Q_{vis} = -\alpha P_{gas} R \frac{d\Omega}{dr}$

Solution Local flow thermal balance:
Viscous heating $Q_{vis} = -\alpha P_{gas} R \frac{d\Omega}{dr}$ Quisting

$Q_{\mathrm{vis}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R), Q_{\mathrm{ie}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R)$

Monday, 30 August 2010

 $Q_{\mathrm{vis}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R), Q_{\mathrm{ie}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R)$

For typical X-ray luminosity of Cyg X-1 in LHS:

 \Rightarrow No solution!

A possible solution:

1) Assume $P_{\text{mag}} \ge P_{\text{gas}}$

2) Modified viscosity law: $Q_{vis} = -\alpha (P_{gas} + P_{mag}) R \frac{d\Omega}{dr}$ (e.g. Oda et al 2010, Bu et al 2009, Fragile & Meier 2009 ...)

 $Q_{\mathrm{vis}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R, P_{\mathrm{mag}}), Q_{\mathrm{ie}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R, P_{\mathrm{mag}})$

A possible solution:

1) Assume $P_{\text{mag}} \ge P_{\text{gas}}$

2) Modified viscosity law: $Q_{vis} = -\alpha (P_{gas} + P_{mag}) R \frac{d\Omega}{dr}$ (e.g. Oda et al 2010, Bu et al 2009, Fragile & Meier 2009 ...)

 $Q_{\mathrm{vis}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R, P_{\mathrm{mag}}), Q_{\mathrm{ie}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R, P_{\mathrm{mag}})$

A possible solution:

1) Assume $P_{\text{mag}} \ge P_{\text{gas}}$

2) Modified viscosity law: $Q_{vis} = -\alpha (P_{gas} + P_{mag}) R \frac{d\Omega}{dr}$ (e.g. Oda et al 2010, Bu et al 2009, Fragile & Meier 2009 ...)

 $Q_{\mathrm{vis}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R, P_{\mathrm{mag}}), Q_{\mathrm{ie}}(\tau_T, T_{\mathrm{e}}, T_{\mathrm{i}}, R, P_{\mathrm{mag}})$

For typical X-ray luminosity of Cyg X-1 in LHS, possible solutions with:

 $P_{
m mag}/P_{
m gas} \sim 2$ $Q_{
m adv} \sim 0$ $T_{
m i}/T_{
m e} \sim 2 - 10$ Hot accretion flow solutions
 Accretion disk coronae
 MHD jet models

but...

Non-thermal high energy excess → weak magnetic field
If B is large:
→non-thermal electrons generate too much synchrotron
→Maxwellian electrons are too cold

????

Hot accretion flow solutions
 Accretion disk coronae
 MHD jet models

but...

Non-thermal high energy excess → weak magnetic field
If B is large:
→non-thermal electrons generate too much synchrotron
→Maxwellian electrons are too cold

????

Constraint of low B removed if thermal and non-thermal Comptonisation produced in different locations

→ multi-zone corona ?

A two-component model for the LHS

Thermal comptonisation
 component dominates hard
 X-ray emission

Non-thermal component reproduces soft X-ray excess and MeV emission

A two-component model for the LHS

Thermal comptonisation component dominates hard X-ray emission

Non-thermal component reproduces soft X-ray excess and MeV emission **Conclusions:**

Magnetic field likely to be strong, effects on
 -accretion flow dynamics
 -particle thermalisation / cooling
 -radiation
 Magnetically dominated bot flow models repr

Magnetically dominated hot flow models reproduce the observations of Cygnus X-1

The structure of the corona appears complex: multi-zone models seem required