

The physics of the brightest low mass X-ray binaries and jet formation

M. Balucinska-Church, M. J. Church

X-ray Binaries Group, School of Physics and Astronomy University of Birmingham, U.K.

Accretion Process in X-rays: from White Dwarfs to Quasars, 13-15 July, 2010, Boston MA

Contents of talk

- Explanation of the super-Eddington Z-track sources
- The Extended Accretion Disc Corona
- Additional physics: radiation pressure and unstable nuclear burning
- Explanation of the Banana and Island states in Atoll sources

Z-track and Atoll

4U 1608-52 (van Straaten et al. 2003)

Z-track sources: 10^{38} org/s ()

 $L>10^{38}~erg/s$ (L_{Edd})

Horizontal, Normal & Flaring Branches: major physical differences at inner disc and neutron star – not understood

- Cygnus X-2 like sources: Cyg X-2, GX 5-1, GX 340+0
- Sco X-1 like sources: Sco X-1, GX 349+2, GX 17+2, LMC X-2, Transient: XTE J1701-462
- Radio emission shows relativistic jets: in Horizontal Branch only v/c=0.45 in Sco X-1 =>

Atoll sources: 10³⁶ – 10³⁸ erg/s 2 states: Banana & Island

typical Atoll sources: 0.01 – 0.2 $\rm L_{Edd}$ GX Atolls in the Galactic bulge: 0.2 -0.5 $\rm L_{Edd}$

Possibility of determining conditions needed for jet launching

The Extended Accretion Disc Corona

Two emission components: Comptonization from an extended ADC + blackbody from Neutron Star

- Comptonization: dominates spectrum
- Form of Comptonization: must reflect broadband spectrum of seed photons from disc

Two emission components: multi-colour disc blackbody + Comptonization in NS atmosphere / inner disc

variations of the Eastern model: e.g. Lin et al. (2009)

Measurements of the radial extent of the ADC

Dip ingress timing

$$\frac{2\pi r_{AD}}{P} = \frac{2r_{ADC}}{\Delta t} \qquad \text{i.e.} \qquad r_{ADC} = \pi r_{AD} \frac{\Delta t}{P}$$

r_{ADC} depends on luminosity:

r_{ADC}= 20,000 - 700,000 km

Church & Balucinska-Church (2004)

Extended ADC: evidence from ADC lines

Chandra high resolution spectra of Cyg X-2:

Schulz et al. (2009) show broad H-like emission lines of Ne, Mg, Si, S and H - and He-like lines of Fe

• Doppler widths:

due to Keplerian motion in ADC give radial positions: 18,000 – 110,000 km good agreement with dip ingress timing: 20,000 – 700,000 km

Table 2 X-Ray Line Properties

Ion	λ _{meas} (Å)	Flux _{line} ^a	v_D (km s^{-1})
Fe xxvi	1.792 ± 0.009	0.39 ± 0.28	1120 ± 870
Fe xxv	1.861 ± 0.005	1.97 ± 0.27	3450 ± 710
S XVI Lya	4.726 ± 0.011	0.79 ± 0.25	1860 ± 1140
Si XIV Lya	6.188 ± 0.005	1.03 ± 0.15	1610 ± 290
Al XII	7.812 ± 0.003	0.38 ± 0.06	530 ± 110
Fe xxiv	7.973 ± 0.001	0.78 ± 0.05	370 ± 40
Mg XII Lyα	8.419 ± 0.004	1.26 ± 0.38	2730 ± 480
Ne x Lyα	12.13	≲1.3	≲5600

Note. ^a10⁻⁴ ph s⁻¹ cm⁻², uncertainties are 90% confidence.

Schulz et al. 2009

• Line properties:

consistent with a stationary, hot ADC (log $\xi > 3$; T > 10⁶ K) as in modelling of ADC (Jimenez-Garate et al. 2002; (Różanska & Czerny 1996)

• The Extended ADC: is inconsistent with the Eastern model

Resolving the nature of the Z-track sources

• QPO variation around the Z:

has not resolved the nature of the sources

• Spectral fitting should resolve the problem:

but all previous fitting used the Eastern model: Cyg X-2 – Done et al. (2002); GX 349+2 – Agrawal & Sreekumar (2003); Cyg X-2- di Salvo et al. (2002); XTE J1701-462 – Lin et al. (2009)

Standard assumption:

Mdot increases monotonically around Z (Hasinger et al. 1989) => Flaring due to increased Mdot limited evidence based on X-ray / UV correlation New evidence of Rykoff et al. (2009) + our work is contrary to standard model

We have applied Extended ADC approach:

Application of Extended ADC model

• **Rossi-XTE observations of the Cygnus X-2 like sources:** GX340+0

Neutron star blackbody emission

The Soft Apex:

 $kT_{BB} = 1.3 \text{ keV} - \text{minimum}$ $R_{BB} = 10 - 12 \text{ km}$ => all neutron star emittingneutron star radius = 11.4 +/-0.6 km suggests a Quiescent State

Normal Branch:

 kT_{BB} increases on NB and HB implies Mdot increases

Luminosities of Blackbody and ADC

• Normal Branch:

 L_{ADC} increases => increase of Mdot Consistent with X-ray intensity and heating of neutron star

Flaring Branch: L_{ADC} constant => Mdot constant

Mdot does not increase monotonically around the Z-track

• The nature of Flaring:

Blackbody luminosity increases => extra energy source on neutron star may be unstable thermonuclear burning

 We will compare with theory of unstable burning: Fujimoto et al. (1981); Fushiki & Lamb (1987); Bildsten (1998); Schatz et al. (1999)

Comparison with regimes of nuclear burning

• We measure mdot :

mdot = Mdot / $4\pi R_{BB}^2$ (Mdot from luminosity)

• Soft Apex:

 $mdot = critical value (mdot_{ST})$ for onset of unstable burning

Formation of radio jets

Radio flux variation:

• We show: f/f_{Edd} the emissive flux of neutron star / the Eddington flux:

 $f_{Edd} = \frac{L_{Edd}}{4\pi \cdot R^2}$

- **Soft Apex:** is sub-Eddington
- Hard Apex: at Eddington limit strong local radiation pressure
- Correlation: with detection of radio jets
- We propose: radiation pressure --> disc disruption --> launching of jet

The Sco X-1 like sources: GX 17+2

• Flaring:

is much stronger

• We show: observations of GX 17+2

Balucinska-Church et al. 2010

GX 17+2: comparison with Cyg-like sources

Normal and Horizontal Branches:

same as Cyg-like sources

• Flaring Branch:

L_{ADC} increases (unlike Cyg-like sources)

- => Mdot increases
- L_{BB} also increases
- => unstable nuclear burning

Unstable nuclear burning in GX 17+2

 Soft Apex: mdot = critical value (mdot_{ST})
 => unstable nuclear burning

• Flaring Branch: unstable burning + Mdot increase

Difference between Sco-like and Cyg-like sources

• Flaring in Cygnus X-2 like sources: unstable nuclear burning

• Flaring in Scorpius X-1 like sources: Mdot increase + unstable nuclear burning

(Sco X-1 and GX 349+2 similar to GX 17+2)

Cyg-like sources

Sco-like sources

unstable burning + Mdot increase

Atoll survey results

Survey of LMXB: ADC and Neutron Star temperature

• We measure: T_{ADC} from high energy cut-off T_{BB} from fitting

• Thermal equilibrium: L > 2 10³⁷ erg/s: ADC in equilibrium with NS

 Coronal heating: L < 2 10 ³⁷erg/s: no equilibrium ADC hot - unknown heating mechanism

Cause of hardening in Island State

Island state:

ADC temperature increases --> E_{CO} rises --> hardening of the Island state

Summary

Atoll sources:

 Only 2 tracks - not 3 as in Z-track sources: Banana state = Normal Branch = changes of Mdot Island state - not possible in Z-sources - only possible for L < 2.10³⁷ erg/s No Flaring Branch - unstable burning not possible ** (does not apply to transitional sources e.g. XB 1624-490 "GX-Atoll" type)

Z-track sources:

- We have proposed a model of Cygnus X-2 like sources requiring physics *additional* to accretion physics: high radiation pressure --> jets unstable nuclear burning --> flaring
- We are working to a unified model of Cyg-like and Sco-like sources Flaring in Cyg-like sources = unstable burning Flaring in Sco-like sources = unstable burning + Mdot increase
- Difference between Atoll and Z-sources:

Z-sources, ADC and NS are in thermal equib Island State of Atolls: ADC is hot