

# Error Analysis of HRC-I ECF Regions Applied to ACIS Data 

Eli Beckerman, Diab Jerius

Smithsonian Astrophysical Observatory
60 Garden Street, Cambridge, MA 02138


## Abstract

In order to determine the errors associated with using HRC-1 enclosed count fraction (ECF) tables on ACIS data, we raytrace a grid of off-axis observations with both HRC-I and ACIS-I at the aimpoint. We use two different approaches to determine the impact of using HRC-I ECFs on ACIS data. First, we compare the radii at which specific enclosed count fractions are reached on HRC and on ACIS Second, we apply the HRC ECF regions to ACIS data and study the relative enclosed count fractions at those radii. We find that the radii of the $50 \%$ ECFs differ by as much as $43 \%$ between differ by a maxi ECFs.

## Introduction

The enclosed count fraction (ECF) tables which have been released to the public were generated via $S A O$ sac raytraces using an infinite HRC-I as the detector. We examine the errors associated with using these HRC-I ECFs to characteriz the PSF of ACIS observations. In particular, we concentrate on the effect of projecting to the different detector planes. We ignore the difference between the

We raytrace observations with the HRC-I and ACIS-I at the aimpoint, at position that make up a polar grid on the ACIS-I as well as a line across the middle of the ACIS-S. In addition to comparing the HRC and ACIS ECFs directly, we also apply the HRC ECF regions to the ACIS simulations.

This study utilizes circular regions created by the CXC Optics group's circular ECF program, enen-evts.

## Setup

We choose a grid of positions to raytrace such that the far ACIS-S chips would be covered with ACIS-I at the aimpoint. Figure 1 below shows this grid against the
ACIS detectors. The sources that fall on ACIS-S are spaced 2 arcminutes apart.

We raytrace a point source with a spectrum such that there will be uniform signal-to-noise across the entire spectrum. We determined that a high ray density was necessary because the enclosed count fractions were sensitive to the numbe of source counts. Each raytrace has about $10^{6}$ total counts.

We then project the rays to the focal plane with the CXC Optics group's detector model, deticpt. We use non-pixelized detector coordinates for ECF generation, which apart from the effects of dither and aspect reconstruction are functionally identical to the sky coord

A number of complicating factors are handled as follows:
We use an infinite detector plane to avoid chip gaps.

- We don't treat the impacts of pixelization or telescope dither.

Ghost rays are filtered out, though they may affect real observations at off-axis angles $>15$. Their large spatial extent dramatically inflates the outer annuli. Real observations will typically not be affected by them because of their low surface brightness. However, as our simulations do not include background contamination they significantly bias our results and must be excluded to match on-orbit performance.

##  <br> Figure 1. Positions of raytraces on ACIS, with ACIS-I at the aimpoint. These positions were chosen to sample different parts of the larray as well as the far chips of the S array.

## Analysis

We compare the HRC-I and ACIS-I ECFs in two manners. First, we derive the ratios of the radii for the $50 \%, 90 \%$, and $95 \%$ ECFs for both detectors. This provides an indication of how the difference in detector planes distorts the shape of the PSF. In the
second comparison, which is more useful for observers, we apply the ECF regions second comparison, which is more useful for observers, we apply the ECF regions
 ECFs as a function of energy for the $\phi=0$ ACIS-I subset in Figure 2 The plot on the left is the ratio of $90 \%$ ECF radii between ACIS and HRC, while the one on the right is the ratio of enclosed count fractions at the HRC $90 \%$ ECF radii. Qualitatively the results at the other azimuthal angles are similar to those at $\phi=0$, but there is a noticeable azimuthal effect on the errors.

For further off-axis results we focus on the $90 \%$ ECFs. Since the underlying model of the the 50\% ECFs are not reliable off-axis. Figure 3 below shows results for the 50\% and 95\% ECFs at $\phi=0$ as an example. Comparing to the $\mathbf{9 0 \%}$ ECFs in Figure 2, it is clear that the errors for the 50\% ECFs are larger and those for the 95\% ECFs are smaller.

Figure 3. Left. Ratios of the $50 \%$ and $95 \%$ ECF radi on ACIS and HRC. The $50 \%$ radit differ by as much as $34 \%$.
Right: Ratios of enclosed count fractions at the $50 \%$ and $95 \%$ HRC ECF radii. The maximum error is about $30 \%$.

Figure 4, below, shows the results for the raytraces that fall on the ACIS-S array, using only the $90 \%$ ECFs. Again, the plots on the left are the ratio of the $90 \%$ ECF radii, and Figure 5 , at the bottom of this panel, shows the results where we find the maximum er


From Figure 5, we find that errors in the ECF radii of up to 43\% are possible when looking at the $50 \%$ enclosed count fractions. Actually applying the HRC-I regions to $0-1 \mathrm{keV}$ range for off-axis angles of $4-6 \cdot$. Looking at the $90 \%$ ECF regions, the radii disagree by a maximum of $24 \%$, and applying them to ACIS data would result in a maximum error of $6.2 \%$.

Interestingly, the largest errors are seen at relatively small off-axis angles (4-6). On-axis, of course, both the HRC and ACIS PSFs agree perfectly. But as we move further off-axis, and eventually onto the $S$-array, the ratios begin to approach unity.

To understand this, we examine the geometries of the detectors and the focal surfaces for different energies and off-axis angles. Figure 6 shows the focal surface for 3 different energies $(1,4,8 \mathrm{keV})$ as a function of $\theta$ (at an azimuthal angle of $\phi=0$ ). The HRC-I and ACIS-I detector planes are included for comparison. The most significan and the detector plane for each raytrace. We compare these distances for the HRC ACIS data in Figure 7, by taking their ratio. We also plot the distances between the HRC and ACIS detectors in Figure 7. Note that these are functions of azimuth, so the for instance, at $\phi=45^{\circ}$ the distance between the planes is larger.

at energies of 1,4 , and 8 keV, as a function of off-axis angle $\theta$.

## Figure 7 . Leff: ACII/HRC Ratio of detector plane - focal surface distances. Right: Distance between HRC and ACIS detector planes, as a function of off-axis angle $\theta$.

There are only a few instances where the PSF on the HRC is tighter than that on ACIS, resulting in a ratio of the ACIS/HRC $90 \%$ ECF radii to be greater than 1 . This is mainl at low energies and an off-axis angle of $\theta=1$ Looking at the $\mathrm{e}=1 \mathrm{keV}$ focal surface in Figure 6 , it is evident that it is closer to the HRC detector at $\theta=1$. This also shows up in the ratio of the focal surface - detector plane distances in Figure 7, where it is greater than 1 for $\theta=1$ at low energies. The other ratio greater than 1 in that plot is the ratio very small numbers for $\theta=1$

At large off-axis angles, the distance between the two detector planes is so much smaller than the distance between the detector plane and the focal surface, so the results in Figure $4(\theta>14)$ are closer to unity than those in Figure $2(\theta \leq 10)$. The other effect is that the latter simulations fall on ACIS-I, while the far off-axis simulations are on ACIS-S. Figure 7 shows that the ACIS-I chips are more steeply tilted, and so the distance betwee ACIS-I and HRC-I can be greater than that between the ACIS-S and HRC-I.

The energy dependence of the errors, as seen in Figures 2-5, can be explained by the change in the shape of the focal surface with energy, as in Figure 6 . The focal surface get much steeper at higher energes, and this has the same effect as going to larger off-axis angles -- the HRC and ACIS results are more simiar because the distance between their detector planes is so much smaller than their distance from the focal surface.

Figure 8 . Plot of HRC and $A C I S$ enclosed count fraction vs. radius for $\theta=4, \mathrm{e}=0 .-\mathrm{l}$ keV. This
demonstates how the errors in the radii rare more significant than the errors in the enclosed counts.

## Conclusion

This study compares the PSF projected to the HRC and ACIS focal planes in order to determine the errors associated with using HRC ECF regions to characterize the ACIS PSF. It is done without pixels, detector edges, ghost rays, or dither. We find that the $0 \%$ HRC ECF regions are not very suitable for applying to off-axis ACIS data, resulting in errors of up to $\mathbf{3 5 \%}$. The $\mathbf{5 0 \%}$ radii themselves differ by as much as $\mathbf{4 3 \%}$. We recommend using the $\mathbf{9 0 \%}$ HRC ECF regions, whose radii differ from the ACIS regions by as much as $\mathbf{2 4 \%}$, but result in a maximum error of $\mathbf{6 . 2 \%}$ between 4-6' off-axis.
These quoted errors, it should be noted, are not representative but rather worst-case error

The errors in the radii are much larger than those in the enclosed fractions, which may seem inconsisten. In fact hey are 10, as is indeated by Figure 8 , which show he ECF versus radius for both the HRC and ACIS data. Moving from the HRC data the ACIS data, and starting at the $90 \%$ HRC ECF radius, the change in radius is far bigger than the change in the enclosed count fraction

