SPATIAL STRUCTURE OF ACIS CONTAMINATION

Scope

- Flux ratio for Mn-K and (Mn+Fe)-L gives τ near 700 eV
- Results presented many times since 2002
- This talk:
 - > final report (hopefully)
 - > science tests using A1795 pointings

Data

• ECS data over 3 months (t-dependence) or 1 year (x,y-dependence)

• flux =
$$\frac{\text{Observed cnt/s}}{\text{QE} \times \text{OBF transmission} \times \text{QEU}}$$

$$au_L = -4.687 - \log(f_L/f_{\text{Mn-Ka}})$$
 for S3
$$au_L = -4.925 - \log(f_L/f_{\text{Mn-Ka}})$$
 for ACIS-I and S2

Qualitative spatial distribution

ACIS, L-line image:

Qualitative spatial distribution

ACIS, L-line image:

Time dependance, S3

- > fits of the form $\tau = \tau_{\infty} (1 \exp(-t/T))$
- > · · · fit to chip-averaged data (C. Grant)

Time dependance, ACIS-I

> stronger contamination in ACIS-I ($\Delta \tau_L \simeq 0.08$)

Time dependance, S2

> (S3 vs. I difference not due to FI/BI crosscalibration)

Spatial dependence, S3

fits of the form $\tau(y) = \tau_0 + \tau_1 |y - 512|^{\alpha}$, with τ_0, τ_1 from t-dependence

Spatial dependence, S3

fits of the form $\tau(y) = \tau_0 + \tau_1 r^{2.0}$, with τ_0, τ_1 from *t*-dependence

How to go from τ_L to $\tau(E)$

- ECS gives model for $\tau_L(x, y, t)$
- we want $\tau(E, x, y, t)$
- procedure: $\tau(E, x, y, t) = \tau_{grat}(E) \times A$ A adjusted so that $\tau_L(x, y, t)$ is reproduced

Structure of the L-complex

From central energy of L-line:

Line group	E, keV	f(FI)	f(BI)
Fe α, β	0.706	39%	33%
Mn α, β	0.638	54%	58%
Fe ζ, η	0.618	2%	3%
Mn ζ, η	0.559	5%	6%
Етр	oirical fit		
X α	0.665	93%	
Χζ	0.535	7%	

$$A = \frac{\tau_L(x, y, t)}{\sum f_i \tau_{\text{grat}}(E_i)}$$

Final model

- 1) $\tau(E)$ from grating measurements
- 2) $\tau_L(x, y, t)$ from ECS data
- 3) $\tau(E, x, y, t)$ from renormalization of $\tau(E)$ to match $\tau_L(x, y, t)$
 - Model should be at $E \gtrsim 0.6$ keV (above L-line) can be inaccurate near C-K edge until $\tau(E)$ finalized
 - TEST: multiple observations of A1795:
 - 4 times in the center of S3
 - pointings to bottom & top of S3, center & edge of ACIS-I

A1795: t-dependence in S3

< 3% residuals, time span 4 years

A1795: spatial dependence in S3

(reference fit from all pointings to S3-center)

A1795: cross-calibration between ACIS-S and ACIS-I

A1795: cross-calibration between ACIS-S and ACIS-I

reference fit from all pointings S3-center, corrected for 3% dead area

A1795: spatial dependence in ACIS-I

(joint fit to center and edge data)

Conclusions

Accurate contamination model for ACIS imaging

(< 2 - 3% uncertainties above 0.6–0.7 keV)

• (A1795 data also confirms cross-calibration of FI/BI QE and QEU)