Part 2: Developing Catherine's temperature dependent CTI-correction algorithm as contributed software

Jennifer Posson-Brown (SAO), Catherine Grant (MIT) Glenn Allen (MIT), Paul Plucinsky (SAO) & ACIS Team

Overview

- Our strategy for developing IDL code to work with acis_process_events
- Description of IDL code, testing, and how to use it
- Example with ECS data
- Future work

* PI, ENERGY calculated from PHA and GAIN file

- * PHA, GRADE, FLTGRADE calculated from PHAS
- * TGAIN applied to PHA
- * PI, ENERGY calculated from PHA and GAIN file

Note! TGAIN and GAIN files, and rules for calculating PHA and FLTGRADE, are different for CTI-corrected and uncorrected data.

Basic strategy:

Use IDL code to apply temperature-dependent CTI correction, updating PHAS column
Use acis_process_events with apply_cti=no to calculate PHA, FLTGRADE, and GRADE based on updated PHAS, apply TGAIN and GAIN

Problem: Rules for caculating PHA and FLTGRADE are different for CTI-corrected and uncorrected data. Solution: IDL code rearranges PHAS in certain cases to ensure a consistent grading scheme with CTI-corrected data.

Problem: Different TGAIN and GAIN files are used for CTI-corrected and uncorrected data. Solution: Specify appropriate files with acis_process_events parameters gainfile and tgainfile.

Description of tcticorr.pro

- Input files: level 1 event list, MTL file
- <u>Parameters</u>: % CTI change per degree values from Catherine's analysis. (1 per FI chip, 2 – parallel and serial – per BI chip)
- Gets focal plane temperature from MTL file for each event by matching exposure number.
- Applies CTI correction like acis_process_events (using CALDB CTI file) but with temperature-dependent correction factor applied to trapmap
- Rearranges PHAS in certain cases to ensure grading scheme consistent with CTI-corrected data.
- <u>Output</u>: level 1 event list with modified PHAS column

Test 1: tcticorr.pro should match acis_process_events when % CTI change per degree = 0

Test 2: tcticorr.pro should match Catherine's code when % CTI change per degree = values from her analysis:

How to use

Given evt1 and MTL files from archive:

- Run acis_process_events on evt1 file with default settings to ensure most recent CALDB products applied. Output: evt1_out1
- 2. Run tcticorr.pro on evt1_out1. Output: evt1_out2
- 3. Run acis_process_events on evt1_out2 with apply_cti=no, doevtgrade=yes to regrade. Specify gain and tgain files (file names read from header of evt1_out1). Edit eventdef parameter to remove PHAS column so CTI correction cannot be reapplied. Output: evt1_out3
- Update CTI-related keywords in evt1_out3 header and add new one, CTITEMP, which gives % CTI change per degree values used.

Note: Released version of code will execute steps 3 & 4.

Example: warm ECS observation

Shifts of approx 6 (Al K α), 9 (Ti K α), and 13 (Mn K α) ADU

Shifts of approx. 1.2 (Al K α), 2.0 (Ti K α), and 2.1 (Mn K α) ADU

Conclusions and Future Work

- We have implemented Catherine's temperature dependent CTI-correction algorithm as an IDL program for contributed software
- To Do:
 - 1. More testing: compare vs Catherine on BI chips; test on flight data
 - 2. Check that final output event list works with other CIAO tools
 - 3. Write thread and post on contributed software page
- We expect to release in ~2 months