ICD for REEF circular Encircled Energy calibration file

Parameter data cube HDU for PSF encircled energy

Version: 2008 Aug 25

Contents

1	Introduction	2
2	PSF encircled energy file 2.1 IMAGE HDU header 2.2 BINARY TABLE header 2.3 Coordinate systems	2 2 6 6

Parameter data cube HDU for PSF encircled energy 1 Introduction

It is fairly common to have a data product which gives the value of some quantity or parameter versus a number of coordinates. A number of approaches are used to represent such data in FITS. Here were recommend use of multiple IMAGE HDUs together with tabular coordinates in binary table HDUs. Storing the data in IMAGE HDUs makes it easy for generic tools to visualize them.

Note: in this document, we do not distinguish between encircled energy and encircled counts fractions; this needs to be fixed in a future rev.

2 PSF encircled energy file

The PSF encircled energy data consists of parameters as a function of detector position, energy, and encircled energy fraction: f(ECF,THETA,PHI,E). Each such parameter corresponds to a 4-D IMAGE HDU. In the circular ECF file, there is a triple of such parameters: the best estimate radius and the 1-sigmalow and 1-sigma-high values of the radius. In the elliptical ECF file, there are further triples corresponding to each of the ellipse fit parameters and their errors. In each case, it is recommended that the image grid be the same for all parameters in the file, so that they can share the same coordinate system.

The structure of the file is: (/data/jcm/sds/dp/ecf.new)

dmlist ecf.new blocks				
Dataset: ecf.new				
Block Name		Туре	Dimensions	
Block Block	1: RADIUS 2: RADIUS_SMIN	Image Image	Real4(100x14x8x40) Real4(100x14x8x40)	
Block Block Block	3: RADIUS_SMAX 4: WCS-TAB1 5: WCS-TAB2	Image Table Table	Real4(100x14x8x40) 1 cols x 1 1 cols x 1	rows rows
Block Block	6: WCS-TAB3 7: WCS-TAB4	Table Table	1 cols x 1 3 cols x 1	rows rows

For an elliptical ECF file, extra image HDUs for different parameters would be added as needed.

2.1 IMAGE HDU header

The following keywords will be used for the CXC PSF file IMAGE HDU headers. First, we list the CXC keywords describing the observing configuration and then the CALDB indexing keywords.

HDUCLAS1	RESPONSE	dataset relates to instrument response
HDUCLAS2	REEF2	
HDUCLAS3	PREDICTED	
HDUCLAS4	NET	
ORIGIN	CXC Calibration	
CREATOR	write-ecf-fits 1.14	
DATE	2004-02-24T23:16:31	
MODEL	orbit_XRCF+tilts_04	raytrace configuration
MISSION	AXAF	should you accept it
TELESCOP	Chandra	satellite
INSTRUME	TEL	
DETNAM	HRC-I	
GRATING	NONE	
SHELL	1111	Shell 1346 bitmap
FILTER	NONE	
CCNM0001	REEF2	
CDES0001	HRMA Encircled Energy	
CBD10001	ECF(0.010000-1.000000)	
CBD20001	THETA(0.000000-20.000000)arcmin	n
CBD30001	PHI(0.000000-360.000000)deg	
CBD40001	ENERG_LO(0.125000-9.875000)keV	
CBD50001	ENERG_HI(0.375000-10.125000)keV	J
CBD60001	SHELL(1111)	
CCLS0001	BCF	
CDTP0001	DATA	
CVSD0001	1996-12-20T02:57:00	

BUNIT = 'arcsec'

/ Units of Radius

The actual example file has a more extensive header:

SIMPLE	= T / file does conform to FITS standard
BITPIX	= -32 / number of bits per data pixel
NAXIS	= 4 / number of data axes
NAXIS1	= 100 / length of data axis
NAXIS2	= 14 / length of data axis
NAXIS3	= 8 / length of data axis
NAXIS4	= 40 / length of data axis
EXTEND	= T / FITS dataset may contain extensions
COMMENT	= FITS (Flexible Image Transport System) format is defined in 'Astronomy /
COMMENT	= and Astrophysics', volume 376, page 359; bibcode: 2001A&A376359H /
HDUNAME	= RADIUS / ASCDM block name
LONGSTRN	= OGIP 1.0 / The HEASARC Long String Convention may be used.
COMMENT	= This FITS file may contain long string keyword values that are /
COMMENT	= continued over multiple keywords. The HEASARC convention uses the & /

COMMENT	=	character at the e	nd of each substring which is then continued /
COMMENT	=	on the next keywor	d which has the name CONTINUE. /
HDUCLAS1	=	RESPONSE	/ dataset relates to instrument response
HDUCLAS2	=	REEF2	/
HDUCLAS3	=	PREDICTED	/
HDUCLAS4	=	NET	/
BUNIT =	'arc	sec' / Uni	ts of Radius
CCNM0001	=	REEF	/
CDES0001	=	HRMA Encircled Energ	у /
ORIGIN	=	CXC Calibration	/
CREATOR	=	write-ecf-fits 1.14	/
DATE	=	2004-02-24T23:16:31	/
MODEL	=	orbit_XRCF+tilts_04	/ raytrace configuration
MISSION	=	AXAF	/ should you accept it
TELESCOP	=	Chandra	/ satellite
INSTRUME	=	TEL	/
DETNAM	=	HRC-I	/
GRATING	=	NONE	/
CBD10001	=	ECF(0.010000-1.00000	0) /
CBD20001	=	THETA(0.00000-20.00	0000)arcmin /
CBD30001	=	PHI(0.00000-360.000	000)deg /
CBD40001	=	ENERG_L0(0.125000-9.	875000)keV /
CBD50001	=	ENERG_HI(0.375000-10	.125000)keV /
CBD60001	=	SHELL(1111)	/
CCLS0001	=	BCF	/
CDTP0001	=	DATA	/
CVSD0001	=	1996-12-20T02:57:00	/
SHELL	=	1111	/ Shell 1346 bitmap
FILTER	=	NONE	/
HISTORY	=	write-ecf-fits	/
HISTORY	=	config orbit_XRC	F+tilts_04 /
HISTORY	=	denergy 0.5	/
HISTORY	=	detector HRC-I	/
HISTORY	=	extract_order en	ergy,theta,phi /
HISTORY	=	extract_re	/
HISTORY	=	(\$RE{num}{real})[_/]	(\$RE{num}{real})[_/](\$RE{num}{real}).rdb /
HISTORY	=	flip_phi 1	/
HISTORY	=	frac fraction	/
HISTORY	=	output hrmaD1996	-12-20hrci_ecf_N0002.fits /
HISTORY	=	rpar radius,arcs	econds,radius_median,radius_p15.87,radius_p84.13 /
HISTORY	=	vdate 1996-12-20	T02:57:00 /
CTYPE1B	=	ECFTAB	/ Encircled fraction contour
CTYPE2B	=	THET-TAB	/ [arcmin] Off Axis Angle
CNAME2B	=	THETA	/
CUNIT2B	=	arcmin	/
CTYPE3B	=	PHITAB	/ [deg] Azimuth

CUNIT3B	=	deg
CTYPE4B	=	ENER-TAB
CNAME4B	=	ENERGY
CUNIT4B	=	keV
PS1_0B	=	WCS-TAB
PV1_0B	=	1
PS1_1B	=	ECF
PS2_0B	=	WCS-TAB
PV2_0B	=	2
PS2_1B	=	THETA
PS3_0B	=	WCS-TAB
PV3_0B	=	3
PS3_1B	=	PHI
PS4_0B	=	WCS-TAB
PV4_0B	=	4
PS4_1B	=	ENERGY
CTYPE1P	=	ECF_BIN
CRVAL1P	=	0
CRPIX1P	=	0
CDELT1P	=	1.0000000
WCSTY1P	=	PHYSICAL
CUNIT1P	=	bin
LTV1	=	0
LTM1_1	=	1.0000000
CTYPE1	=	ECF1
CRVAL1	=	0.01000000
CRPIX1	=	1.0000000
CDELT1	=	0.01000000
CUNIT1	=	
CTYPE2P	=	THETA_BIN
CRVAL2P	=	0
CRPIX2P	=	0
CDELT2P	=	1.0000000
WCSTY2P	=	PHYSICAL
CUNIT2P	=	bin
LTV2	=	0
LTM2_2	=	1.0000000
CTYPE3P	=	PHI_BIN
CRVAL3P	=	0
CRPIX3P	=	0
CDELT3P	=	1.0000000
WCSTY3P	=	PHYSICAL
CUNIT3P	=	bin
LTV3	=	0
LTM3_3	=	1.0000000
CTYPE3	=	PHI1

/ / [keV] Energy / / / Table for lookup coord / Table for lookup coord / Column name / Table for lookup coord / Table for lookup coord / Column name / Table for PHI coord / Table for lookup coord / Column name / Table for lookup coord / Table for lookup coord / Column name / / / / / / / / / 1 / / / / / / / / / / / / /

////////

CRVAL3	= 0		/
CRPIX3	=	1.0000000	/
CDELT3	=	45.0000000	/
CUNIT3	= deg		/
CTYPE4P	= ENERG	GY_BIN	/
CRVAL4P	= 0		/
CRPIX4P	= 0		/
CDELT4P	=	1.00000000	/
WCSTY4P	= PHYS	ICAL	/
CUNIT4P	= bin		/
LTV4	= 0		/
LTM4_4	=	1.0000000	/
CTYPE4	= ENERG	GY1	/
CRVAL4	=	0.25000000	/
CRPIX4	=	1.0000000	/
CDELT4	=	0.25000000	/
CUNIT4	= deg		/

2.2 BINARY TABLE header

For each axis of the images we include a binary table with HDUNAMES WCS-TAB1,2,3,4.

These HDUs contain single-row binary tables with vectors corresponding to the coordinate values. (I wish that WCS paper 3 had allowed column-oriented coordinate vectors instead of single-row-arrays, but we'd better go with the standard).

XTENSION	= BINTABLE	<pre>/ binary table extension</pre>
BITPIX	= 8	/ 8-bit bytes
NAXIS	= 2	/ 2-dimensional binary table
NAXIS1	= 400	/ width of table in bytes
NAXIS2	= 1	/ number of rows in table
PCOUNT	= 0	/ size of special data area
GCOUNT	= 1	<pre>/ one data group (required keyword)</pre>
TFIELDS	= 1	<pre>/ number of fields in each row</pre>
EXTNAME	= WCS-TAB	<pre>/ name of this binary table extension</pre>
EXTVER	= 1	/
HDUNAME	= WCS-TAB1	/ ASCDM block name
COMMENT	= Coordinate lo	okup for axis /
TTYPE1	= ECF	/ Coordinate
TFORM1	= 100E	/ format of field
TUNIT1	=	/

2.3 Coordinate systems

In the example file, I provide three different paths to the coordinate systems:

- 1. Standard FITS WCS for the ECF, PHI, ENERGY axes. These are useful for DS9 to be able to image the RADIUS data images and put coord values on them. THETA is not included since it's not regularly spaced.
- 2. FITS "Paper 3" WCS-TAB keywords which allow modern, compliant FITS software (if any) to recognize the coordinate array HDUs as being the coordinates on the relevant axes. These keywords tie the PHI axis to the values in the lookup table HDU called WCS-TAB3. I recommend that CXC software should either use these keywords, or hard-code the lookups to the WCS-TAB HDUs for the ECF, THETA, PHI, ENERGY lookups. The ENERG-LO and ENERG-HI vectors are bin steps on ENERGY and have been included as separate arrays in the ENERGY bintable. It is to be hoped that a generic mechanism will eventually be provided to do this.

The file ecf.new2 contains a 3D version of the ECF data, for ECF = 90 percent only. This file is easier to look at in DS9; each frame is a theta, phi map at a fixed energy, and using the cube play option you can cycle through the energies. We might consider using such small (50x smaller) derived files for applications where only one value of the ECF is going to be used.