The X-ray Evolution of Early-Type Galaxies in the Extended Chandra Deep Field-South (E-CDF-S)

Bret Lehmer
(Penn State University)

X-ray Properties of Local Early-Type Galaxies

- X-rays originate from hot interstellar gas and LMXBs.
- Optically luminous ($L_B > 10^{10} L_B,\odot$) - hot gas dominated - $L_X \propto L_B^2$.
- Optically faint ($L_B < 10^{10} L_B,\odot$) - LMXB dominated - $L_X \propto L_B$.

O'Sullivan et al. (2001)
Sarazin et al. (2001)
Sivakoff et al. (2004)
Motivation and Goals of this Study

- Hot gas radiates powerfully but does not cool despite short inferred cooling timescales (10^8 yr).
- Cooling-flow models, which include heating from stellar winds and type Ia supernovae, overpredict the amount of cooled gas observed in the central regions of ETGs. (e.g., Mathews & Brighenti 2003)

In this study, we aimed to address the following questions:

1. Has the average hot interstellar gas content within optically luminous ETGs evolved over the last \approxhalf of cosmic time? How does transient AGN activity contribute to this evolution?

2. Have LMXB populations in optically faint ETGs evolved significantly since $z \approx 0.5$? What are the physical implications of such evolution?
Early-Type Galaxy Sample Selection

- Utilized multiwavelength coverage in the E-CDF-S to select > 500 ETGs over the redshift range $z \approx 0.1 - 0.7$.
- ETGs were selected using the combination of rest-frame red-sequence colors (COMBO-17) and Sersic indices (GEMS). (McIntosh et al. 2005)

Giacconi et al. (2002); Lehmer et al. (2005)
Beckwith et al. (2006)
X-ray Detected Sources

- E-CDF-S sufficient to detect luminous normal ETGs out to $z \geq 0.7$.
- Detected 49 ETGs in X-rays: 17 normal galaxies and 32 AGN candidates.
- AGNs were identified using:
 1. Hard X-ray Emission (2–8 keV/0.5–2 keV band ratio)
 2. X-ray–to–optical flux ratios (f_X/f_R)
 3. Radio–to–optical flux ratios ($f_{1.4\ GHz}/f_R$)
AGNs in Early-Type Galaxies

- Majority of AGN candidates are in optically luminous ETGs.
- The AGN fraction for optically luminous ETGs evolves strongly with redshift (below left).
- This is consistent with $(1+z)^3$ evolution observed in the Brand et al. (2005) X-ray stacking analyses of $\sim 3300 \ z \approx 0.3 - 0.9$ ETGs (below right).
Normal Early-Type Galaxies

- We used X-ray stacking analyses to study the mean X-ray properties of the normal galaxies in our ETG sample.

- We stacked separately optically luminous and faint ETGs in redshift bins ranging from $z = 0.1 - 0.7$.

- All samples are detected significantly in $0.5 - 2$ keV and two samples are detected in $2 - 8$ keV. The latter two samples have X-ray colors consistent with normal galaxies.

![Image of X-ray stacking analyses](image-url)
Results on the X-ray Evolution of Normal ETGs

- X-ray emission from optically luminous ETGs does not evolve, which we interpret to be due to a balance between the heating and cooling of hot gas.
 - If this balance is primarily due to transient AGN activity, then $\sim 1 - 5\%$ of the bolometric luminosity contributes to heating the gas.
 - Evolution of AGN heating efficiency? Other heating sources dominant?

- We find suggestive evidence for evolution in the X-ray emission from optically faint ETGs. Evolution in LMXB populations? Downsizing?

Forman et al. (2006) Results on the X-ray Evolution of Normal ETGs

Counter Jet Rim

Jet Cavity

Forman et al. (2006)
Potential for Future Work

- Test and constrain better the AGN fraction and X-ray evolution of normal ETGs using additional available and forthcoming survey fields.
 - $z = 0 - 0.2$: NOAO Deep Wide-Field Survey (NDWFS; Murray et al. 2005)
 - $z = 0.1 - 0.5$: All-wavelength Extended Groth Strip International Survey (AEGIS; e.g., Davis et al. 2006)
 - $z = 0.4 - 1$: 2 Ms Chandra Deep Field-North (CDF-N; Alexander et al. 2003)
 - COSMOS, ChaMP, etc.

- Future deep Chandra observations (most notably in the CDF-N) would enable studies of ETG progenitors at redshifts $z > 1$ (e.g., DRGs, EROs, and submm galaxies).
Summary and References

- Used sample of > 500 early-type galaxies to investigate the X-ray evolution of ETGs in the E-CDF-S.
- We find evolution in the AGN fraction of optically luminous ETGs, consistent with other studies.
- We do not observe significant X-ray evolution of normal optically luminous ETG populations. We interpret this to indicate a general balance between the heating and cooling of the hot interstellar gas; AGNs can provide up to 1–5% of their bolometric luminosity in this heating.
- We find suggestive evidence for evolution for our optically faint ETGs, possibly due to the evolution of LMXB; however, due to statistical limitations, this result is presently marginal.