Resonant X-ray Line Scattering in the Winds of High Mass X-ray Binaries

Patrick S. Wojdowski

Massachusetts Institute of Technology

OB Type High Mass X-ray Binaries

- p.2/16

Winds with ASCA

Vela X-1 in eclipse(Sako et al. 1999)

Excitation Mechanisms

Resonant Scattering

Helium-like $n = 2 \rightarrow 1$ **Triplets**

ChandraObservation of Cen X-3

Wojdowski et al. 2003 (ApJ in press, astro-ph/0206065, hereafter W03)

Observed He-like Si Triplets

- p.7/16

W03

Line Ratios

Scattering + Recombination

Eclipse

W03

Scattering + Recombination

Pre-eclipse

- p.9/10

W03

Saturation

Doppler Desaturation

Line Scattering in an HMXB

- p.12/10

Solution of Radiative Transfer

Not too hard to derive a source function for "complete frequency and angle redistribution" : BUT resonant line scattering:

- does not completely redistribute frequencies
- does not completely redistribute angles
- is polarizing!

Monte-Carlo Approach

Sobolev zones are indepedent

- Zones have only three parameters (r̂ wind radial direction)
 - \mathbf{r} in $\mathbf{\hat{r}}$ direction
 - \mathbf{r} $\mathbf{\tau}$ perpendicular to $\mathbf{\hat{r}}$
 - angle to X-ray source relative to $\hat{\mathbf{r}}$
- Straightforward to include polarization

Data awaits analysis

Vela X-1 (Chandra)

4U 1700-37 (Chandra)

Schulz et al. 2002

Boroson et al. (submitted)

Conclusions

- Resonant scattering in photoionized winds is important
- Proper accounting for its effects can provide information on wind velocities
- Proper is accounting is non-trivial but possible with our Monte-Carlo approach