X-ray Spectral Modeling for Low-Mass X-ray Binaries

Mario Jimenez–Garate (MIT)

Collaborators: John Raymond (CfA) Duane Liedahl (LLNL)

Photoionized Plasma Models

Heating = Cooling Recombination rate = Photoionization rate

Particle-photon interactions

Low–Mass X–ray Binaries with Broad X–ray Line Emission

Atmosphere thickened by Irradiation

Vertical Ionization Structure

Centrally Illuminated Accretion Disk

A Thick Atmosphere and Corona

Synthetic X–ray Spectrum vs. Absorption N_{H} of Neutron Star Flux

Jimenez–Garate XRB 02

Line profiles probe radial Atmosperic Changes

Centrally Illuminated Accretion Disk Atmosphere and Corona Comparison with Spectral Data

Comparison with Spectral Data

Comparison with Spectral Data Narrow Line Emission from a Disk Bulge in 4U 1822–37: X–ray pulsar, ADC, P_{orb}= 5.6 hr

Conclusions

Strong Observational Evidence for 'Thick' Disk in neutron star LMXB

Strong Theoretical Evidence for Accretion Disk Atmosphere and Corona present in 0.1–1L_{edd} neutron star LMXB

Atmosphere thickened by irradiation (feedback)

Plasma Diagnostics probe Atmosphere T_e,n_e

Line profiles probe radial Atmosperic Structure

Strong Inclination Dependence of X-ray Recombination Emission

Weak Coupling between Atmosphere and Disk!

Future Work

Observations:

LMXB dipper 4U1254–690 (Disk Emission search)

Eclipsing Dippers EXO 0748–676, Hercules X–1 (Emission & Transmission Spectroscopy)

Theory:

Line Transfer and Relativistic Compton Scattering (Monte Carlo)

Black Hole Accretion Disks

Collaborators: Duane Liedahl, Chris Mauche (LLNL), John Raymond (CfA)