Variability in Quiescent Black Holes

Robert Hynes University of Texas at Austin

With Jorge Casares, Phil Charles, Rob Fender, Mike Garcia, Carole Haswell, Albert Kong, Jeff McClintock, Elena Pavlenko, Rob Robinson, Tariq Shahbaz, Cristina Zurita and others...

(Black Hole X-ray Transients (BHXRTs)

R. Hynes 2002

Optical Flaring

- Some (all?) quiescent BHXRTs flare in optical
- Origin unknown:
 - Companion star?
 - Stream (impact)?
 - Outer disc?
 - Advective flow?
- Can probe structure of accretion flow?

Data from Haswell, 1992, PhD Thesis A0620-00, December 1987

A Variability Census

Disc Variability?

- Several arguments against variability from companion star (see Zurita et al. 2003)
- Simplest is that variability correlates with *disc* contribution to spectrum
- High flaring activity only in sources with large disc veiling
- So variability is from some part of disc

See Hynes et al., 2003, MNRAS, in press

Individual Flares in A0620-00

• Rise times as short as 15s

Clues From Power Density Spectra I

- In outburst can use power spectrum to classify states
- High/soft: Low amplitude red noise
- Low/hard: High amplitude band limited noise
- What is power spectrum of quiescent state?

- Quiescent optical power spectrum is band limited noise!
- Looks like frequency shifted low/hard state, e.g. XTE J1118+480

Clues From Power Density Spectra II

- Models for low/hard state similar to quiescence
- Evaporated inner region, but smaller
- In XTE J1118+480 we measure r_{in} ~ 350 R_{sch} (Chaty et al. submitted)
- Does break frequency scale with size of region?
- If so, r_{in} ~ 10⁴ R_{sch} in A0620-00 in quiescence
- Similar to assumptions of advective models!
- But scaling may not be so simple...

Clues From Optical Emission Lines

- Are line flares correlated with continuum?
- Can use emission line kinematics to locate variability
 - Companion star, stream impact point – narrow line moving over orbit

 Magnetic reconnection in disc – narrow line at random velocity Advective region – no direct line emission

 Could be indirect emission from whole disc – broad, double peaked line

Optical Variability in V404 Cyg

- •V404 Cyg is ideal:
 - Bright
 - Strong variability on long timescales
- Observed WHT, July 1999
- Large flares, line + continuum correlated
- Line amplitude much larger, up to x2
- •Weak flickering as well

See Hynes et al., 2002, MNRAS, 330, 1009

Line Profiles

- Line Profile Changes in V404 Cyg Flares are spread across whole profile
 - Difference profile is double peaked
 P whole disc participates
 - Photoionised by X-ray source?

X-ray Variability I

- If we are right there is clear prediction: X-ray variability should be correlated with lines
- Is this true?

- X-rays are extremely variable
- E.g. ROSAT showed up to x10 changes in <0.5 days (Wagner et al. 1994)
- SAX data also shows large variability

SAX data, PI Phil Charles

Source too faint for detailed study with these facilities...

X-ray Variability II

- Chandra (and XMM) allow more detail (Kong et al. 2002, ApJ, 570, 277)
- X-rays do vary with similar amplitude and timescale as Ha
- Simultaneous observations are obvious next step

Flare Energetics

- Quiescent black holes are faint X-ray sources
- Is photoionisation scenario energetically possible?
 - Ha luminosity ~1.4x10³² erg s⁻¹
 - Ionising luminosity ~10³⁴ erg s⁻¹
 - Assume <30% of incident flux reprocessed to Ha
 - ▶ Require >5% of ionising flux to fall on disc

• Possible, but constrains models

What do we Know?

- Most or all BHXRTs are variable in quiescence
- Variability in X-rays, optical continuum, lines, (radio)
- Associated with disc (but is origin in outer or inner region?)
- Rapid events present
- Band-limited noise (i.e. broken power-law power spectrum)?

Future Work

- Simultaneous observations are obvious next step
- Measure Ha to X-ray ratio in flares **P** test models
- We have 60ks Chandra + 5 orbits HST ACS
- Also get WHT+HET+MMT+Gemini IP 60ks continuous spectroscopy!
- Radio also known to vary...

- Also need more photometry to better define power spectra and search for break
- Brighter sources allow detailed study of individual flares, e.g. rise times, asymmetry...
- Look at optical continuum spectrum of flares