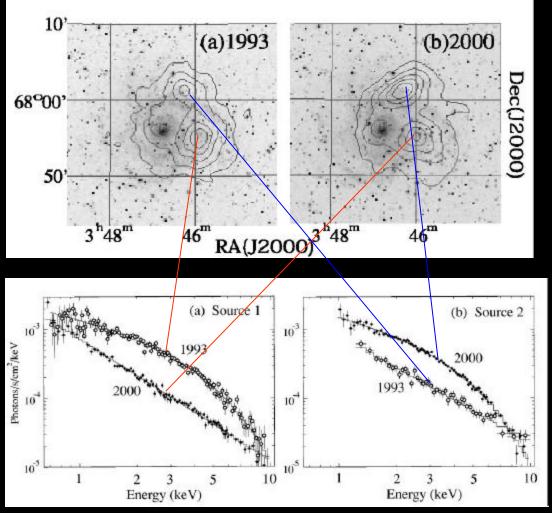

Accretion Disk Spectra of the Ultraluminous X-ray Sources in Nearby Spiral Galaxies and Galactic superluminal jet sources

> Ken Ebisawa, Piotr Zycki, Aya Kubota, T. Mizuno, K. Watarai

Ultra-luminous X-ray Sources (ULX)

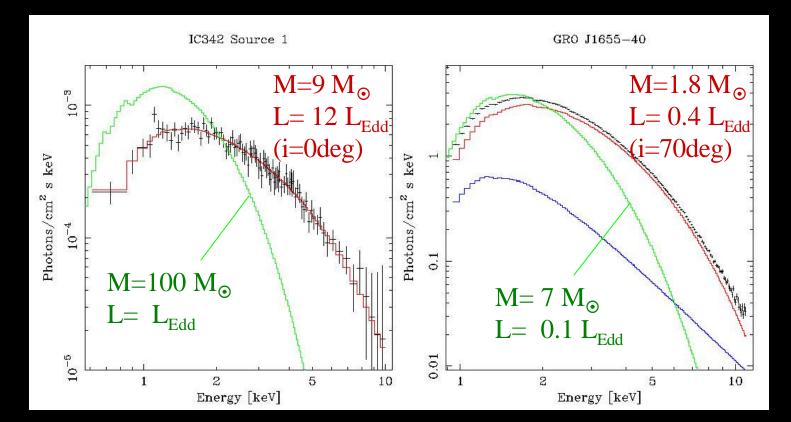

- Discovered with Einstein in nearby spiral Galaxies (e.g., Fabbiano 1988)
- $L_X(0.5-10 \text{ keV}) \sim 10^{39}-10^{40} \text{ erg s}^{-1}$
- Too bright for X-ray binaries, too dim for AGN
- Most sources are located off-center of the Galaxy (Colbert and Mushotzky 1999)
- >100 M_{\odot} not to exceed the Eddington limits?

Characteristics of ULX

- Significant time variation (Source1 in IC342; Okada et al. 1998)
- Compact object in nature

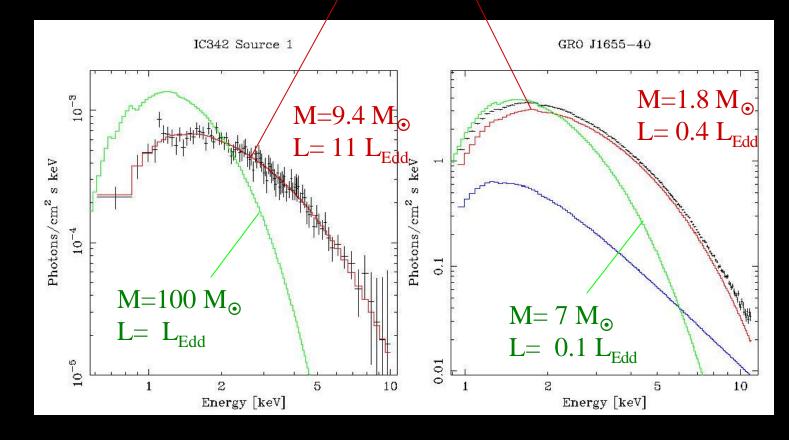
Characteristics of ULX

- High-low transition? (Source1 and 2 in IC342; Kubota et al. 2001)
- Orbital modulation (?) from Source 2 (Sugiho et al. 2001), from a ULX in Circinus galaxy (Bauer et al. 2001)
- Similar to Galactic black hole candidates

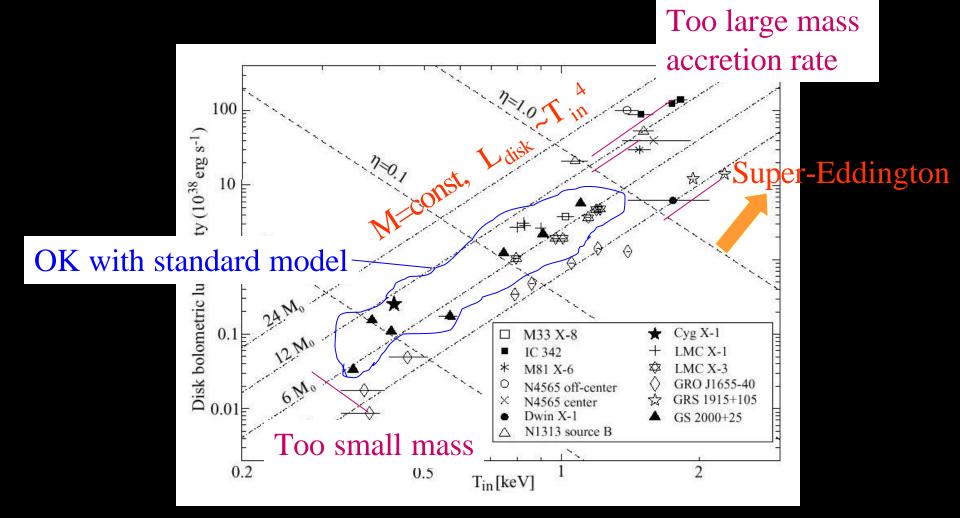

"Too-hot disk" problem in ULX and superluminal jet sources

• ULX energy spectra

- Thermal spectrum, like standard optically thick accretion disk (no advection, $T_{eff}(r) \propto r^{-0.75}$)
- Disk temperature too high for given luminosity and mass, assuming Schwarzschild black hole $(R_{in} = 3 R_s)$ (Okada et al. 1998; Makishima et al. 2000)
- Same problem in Galactic superluminal jet sources GRS1915+105 and GRO J1655-40 (Zhang, Cui and Chen 1997)


"Too-hot disk" problem in ULX and superluminal jet sources

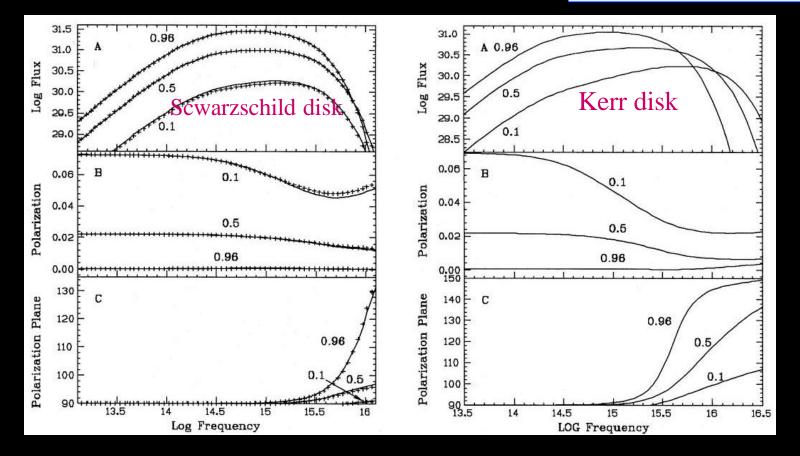
Disk color temperature for Schwarzschild black hole $T_{col} \sim 1.3 \text{ keV} ((T_{col}/T_{eff})/1.7) (\dot{M}/\dot{M}_{Edd})^{1/4} (M/7M_{\odot})^{-1/4}$



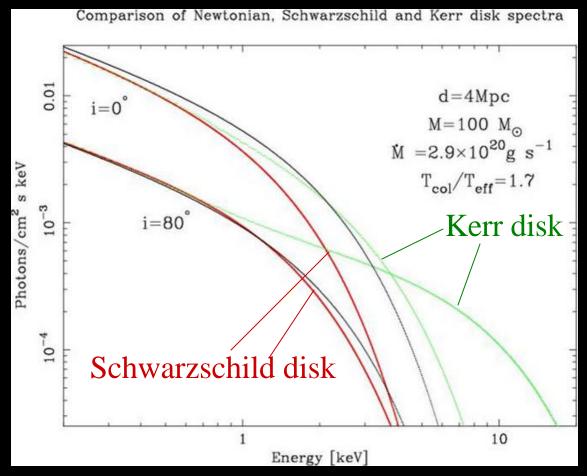
Either too large mass accretion rates (super-Eddington luminosity) or too small mass required

Schwarzschild disk best-fit

- Too hot accretion disks in ULX and superluminal jet sources
- To explain the observation, you need either too large mass accretion rate or too small mass, as long as standard disk around Schwarzschild black hole is assumed



• Makishima et al. (2000)


How to explain the "too-hot" accretion disk?

- Standard accretion disk around Kerr black hole may explain the hard disk spectra (Zhang, Cui and Chen 1997; Makishima et al. 2000)
 - $-R_{in} = 3 R_s$ (Schwarzschild) $\rightarrow 0.5 R_s$ (extreme Kerr)
 - higher disk temperature possible

Inclined Kerr disk is brighter in high energies

Laor, Netzer and Piran (1990) "Transfer function" for a=0.998 available with xspec

- When the disk is face-on, the Kerr disk spectrum is not very different from the Schwarzschild case
- Hard emission from innermost parts is enhanced for inclined Kerr disks (Doppler boosts)
- Near-edge on Kerr disk has very harder spectrum

Application of Kerr disk spectra

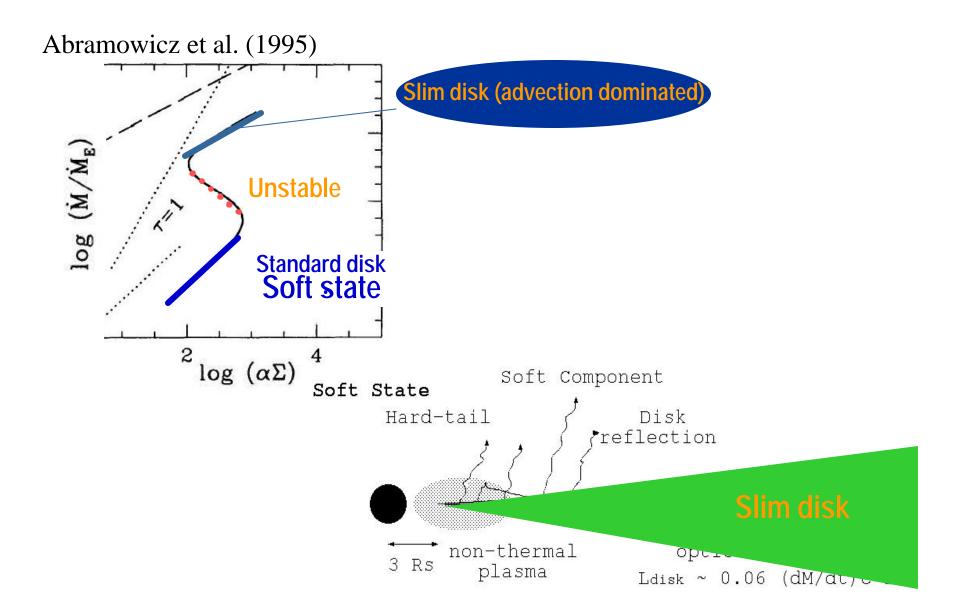
- GRO J1655-40
 - $-i=70^{\circ}$, d=3.2 kpc, $T_{col}/T_{eff}=1.7$ fixed
 - $-M=16 M_{\odot}$ with a=0.998 (extremely Kerr)
 - $-M=7 M_{\odot}$ suggests a=0.68 to 0.88 (Gielinski et al. 2001)
 - Inclined Kerr disk model works to solve too-small mass problem
 - 450 Hz QPO (Strohmayer 2001) supports a standard disk around a spinning black hole (Abramowicz and Kluzniak 2001)

Application of Kerr disk spectra

• IC342 Source 1

- face-on Kerr disk (d=4Mpc, T_{col}/T_{eff} =1.7,a=0.998) M=29 M_{\odot} and L=14 L_{Edd}
 - Not much different from Schwarzschild case
- edge-on (i= 80°) Kerr disk (a=0.998) M= 355 M_{\odot} and L=0.9 L_{Edd}
 - Super-Eddington problem may be solved *only if* the disk is highly inclined
 - Still unreasonably large mass required
- Kerr disk model is not plausible for ULX, because disk inclination should be random

Slim disk (optically thick ADAF disk)


Emerges when L_{disk} ~ L_{Edd}
 Optically thick and geometrically thick disk

$$F(r) \lesssim rac{cGM}{\kappa r^2} rac{h}{r},$$

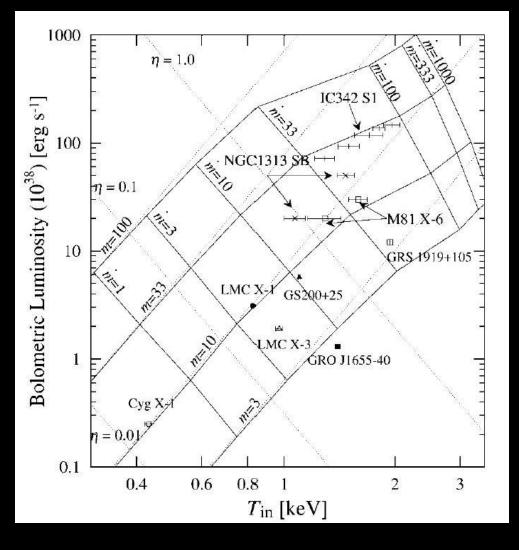
where F(r) is the energy flux, r the disk radius and h the half-thickness. Therefore,

$$egin{aligned} &L_{disk} = 2 \int_{r_{in}}^{r_{out}} 2\pi r F(r) dr \ &\lesssim rac{4\pi c GM}{\kappa} \int_{r_{in}}^{r_{out}} rac{h}{r^2} dr \ &pprox L_{Edd} \ \left(rac{h}{r}
ight) \ \ln \left(rac{r_{out}}{r_{in}}
ight), \end{aligned}$$

h/r ~ 1, ln (r_{out}/r_{in}) ~10 for slim disk $\rightarrow L_{disk}$ can be ~ 10 L_{Edd}

From recent study of Galactic black hole candidates

Disk


Oscillation

- Standard optically thick disk
 - Gravitational energy release \rightarrow Radiation
 - $\begin{array}{c|c} T(r) \propto r^{-0.75}, \ R_{in} = const., \ L_{disk} \propto T_{in}^{-4} \\ \dot{M} \text{ increase} \end{array}$
- Disk instability
 - Energy release \rightarrow Comptonizing plasma
 - Disk compotonization

M increase T increase

- Optically thick ADAF disk
 - Energy release \rightarrow Advection
 - T(r) \propto r^{-0.5}, L_{disk} saturates

Optically thick ADAF disk (slim disk)

Watarai et al. (2001)

 L_{disk} saturates at high T_{in} (due to advection)

IC342 spectral change explained well

Strong disk comptonization

- IC342 source 1, Schwarzschild disk with M=100 M_{\odot}, L=L_{Edd} (Tin = 0.6 keV)
- Put comptonizing corona with $y=(4kT_e/mc^2)\tau_e\sim 0.5 \rightarrow \text{soft photons}$ comptonized and appear in higher energy band
- observed hard spectrum can be explained

Slim disk model for ULX

- Fitting ASCA IC342 Source 1 spectrum with Watrai's slim disk model (face-on, $T_{col}/T_{eff} = 1.7$, pseudo-Newtonian potential) $- M=23 M_{\odot}$, $L_{disk} \sim 6 L_{Edd}$
 - Slim disk model fit successful with reasonable mass and disk luminosity!

Summary

- Standard and near edge-on accretion disk around Kerr black hole can explain the hard spectra of Galactic superluminal jet sources
 - Apparently hard spectra are due to relativistic effects
- Super-Eddington luminosity and hard spectra of ULXs may be explained by Slim disk around a few tens of M_o black hole
 - Such heavy black holes likely in massive star forming region