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OUTLINE
• Introduction and general consideration

• Motivation: why do we need statistics?
• Probabilities/Distributions
• Frequentist vs. Bayes

• Statistics in X-ray Analysis:
• Poisson Likelihood
• Parameter Estimation
• Hypothesis Testing

• References and Summary
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3Why do we need Statistics?
• How do we take decisions in Science?

Tools: instruments, data collections, reduction,
classifications – tools and techniques

Decisions: is this hypothesis correct? Why not? Are
these data consistent with other data? Do we get an
answer to our question? Do we need more data?

• Comparison to decide:
– Describe properties of an object or sample:

Example:
 Is a faint extension
a jet or a point source?

GB 1508+5714
z=4.3

Siemiginowska et al (2003) ‏
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4Stages in Astronomy Experiments

OBSERVE Carefully            Experiment design,                What? Number
exposure time  (S) of objects, Type? (S)

REDUCE Algorithms calibration files               data quality
QE,RMF,ARF,PSF (S) Signal-to-Noise (S)

ANALYSE Parameter Intensity, positions Frequentist
Estimation,   (S) Bayesian?
Hypothesis
testing (S)                                              (S)‏

CONCLUDE       Hypothesis Distribution tests,                 Belivable,
testing  (S) Correlations (S) Repeatable,

Understandable? (S)

REFLECT Carefully              Mission achieved? The next
A better way? Observations (S)
We need more data!
(S)

 Stage How Example Considerations

Wall & Jenkins (2003)‏
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Probability
quantifies randomness and uncertainty

Statistics
uses probability to make scientific    
inferences based on observations
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Bayesian
Probability quantifies degree of belief that

an event will occur

Frequentist
Probability is the relative frequency of an

events occuring, in the limit of infinite number
of trials.
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Probability Distributions

Probability  is crucial in decision process:

Example:

Limited data yields only partial idea about the line width
in the spectrum. We can only assign the probability to
the range of the line width roughly matching this
parameter. We decide on the presence of the line by
calculating the probability.
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The discrete Poisson distribution:

probability of finding Di events (counts) in bin i
(energy rage) of dataset D (spectrum) in a given
length of time (exposure time), if the events occur
independently at a constant rate Mi  (source intensity).

The Poisson Distribution
Collecting X-ray data  => Counting individual photons
                 => Sampling from Poisson distribution
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As Mi => ∝  Poisson distribution converges to
Gaussian distribution    N(µ = Mi ; σ2 = Mi )
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Comparison of Poisson distributions (dotted) of mean µ = 2 and 5 with normal distributions of the same mean
and variance (Eadie et al. 1971, p. 50).

Poisson vs. Gaussian Distributions – Low Number of Counts

µ=2

µ=5
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Comparison of Poisson distributions (dotted) of mean µ = 10, 25 and 40 w ith normal distributions of the same
mean and variance (Eadie et al. 1971, p. 50).

µ=10

µ=25

µ=40

Poisson vs. Gaussian Distributions
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11Gaussian Distribution
For large counts Poisson (and the Binomial) distributions
converges to Gaussian (normal) distributions.

         1
prob(x) =  ⎯⎯⎯  exp[-(x-µ)2/2σ2]

      σ√2π
Mean - µ
Variance - σ2

Note:  Importance of the Tails!

±2σ range covers 95.45% of the area, so 2σ result has less
than 5% chance of occurring by chance, but because of
the error estimates this is not the acceptable result. Usually
3σ or 10σ  have to be quoted and the convergence to
Gaussian is faster in the center than in the tails!



X-ray AstronomySchool, August 2011Statistics,
Aneta Siemiginowska

12What do we do in X-rays?
Example:

I've observed my source, reduce the data and finally got my X-ray
spectrum –  what do I do now? How can I find out what does the
spectrum tell me about the physics of my source?

Run XSPEC or Sherpa! But what do those programs really do?

Fit the data => C(h)=∫R(E,h) A(E) M(E,θ)dE

Assume a model and look for the best model
parameters which  describes the observed
spectrum. Need a Parameter

Estimator - Statistics

Counts Response
     Effective Area

Model

h- detector channels
E- Energy
θ- model parameters
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13Parameter Estimators: Statistics

Large variance

Best

Biased

θ0
S

ta
tis

tic

Requirements on Statistics:

• Unbiased
- converge to true value with
repeated measurements

• Robust
– less affected by outliers

• Consistent
– true value for a large sample
size (Example: rms and Gaussian
distribution)‏

• Closeness
- smallest variations from the
truth
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 Use the Poisson distribution to assess the probability of sampling data Di
given a predicted (convolved) model amplitude Mi. Thus to assess the
quality of a fit, it is natural to maximize the product of Poisson probabilities
in each data bin, i.e., to maximize the Poisson likelihood:

In practice, what is often maximized is the log-likelihood,

L = logℒ. A well-known statistic in X-ray astronomy which is related to L is
the so-called “Cash statistic”:

Maximum Likelihood:
Assessing the Quality of Fit
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L(X1,X2,….XN) = P(X1,X2,….XN|Θ) 

= P(X1 |Θ) P(X2 |Θ)…. P(XN |Θ)
= ∏ P(Xi|Θ)

Likelihood Function

 Model 
parameters

Observed Counts Probability
DistributionLikelihood

 P - Poisson Probability Distribution for X-ray data
X1,….XN - X-ray data - independent
Θ - model parameters
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16Likelihood Function: X-rays Example

• X-ray spectra modeled by a power law function:

f(E)= A * E-γ

E - energy;    A, γ- model parameters: a normalization and a slope
Predicted number of counts:

Mi = ∫R(E,i)*A(E) AE-γdE

For A = 0.001 ph/cm2/sec, Γ=2 then in channels i= (10, 100, 200)
Predicted counts: Mi = (10.7, 508.9, 75.5)
Observed Xi  = (15, 520, 74)
Calculate individual probabilities:
Use Incomplete Gamma Function
Γ(Xi, Mi)

• Finding the maximum likelihood means finding the set of model
parameters that maximize the likelihood function
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If the hypothesized θ is close to the true value, then we expect
a high probability to get data like that which we actually found.

Maximum Likelihood
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18(Non-) Use of the Poisson Likelihood

In model fits, the Poisson likelihood is not as commonly used as it should
be. Some reasons why include:

•  a historical aversion to computing factorials;

•  the fact the likelihood cannot be used to fit “background subtracted”
spectra;

•  the fact that negative amplitudes are not allowed (not a bad thing
physics abhors negative fluxes!);

• the fact that there is no “goodness of fit" criterion, i.e. there is no easy
way to interpret ℒmax (however, cf. the CSTAT statistic); and

•  the fact that there is an alternative in the Gaussian limit: the χ2

statistic.
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19 χ2   Statistic

The  χ2 statistics is minimized in the fitting the data, varying the
model parameters until the best-fit model parameters are found
for the minimum value of the   χ2 statistic

Degrees-of-freedom = k-1- N

N – number of parameters
K – number of spectral bins
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Generally, the χ2 statistic is written as:

where      represents the (unknown!) variance of the Poisson distribution from
which Di is sampled.

  χ2 Statistic

Data Variance  Di
Model Variance  Mi
Gehrels     [1+(Di+0.75)1/2]2
Primini  Mi from previous best-fit
Churazov  based on smoothed data D
“Parent”
Least Squares 1

Note that some X-ray data analysis routines may estimate σi for you during data
reduction. In PHA files, such estimates are recorded in the STAT_ERR column.

“Versions” of the χ2 Statistic
2
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Low Counts X-ray Data

• Standard X-ray analysis in XSPEC or
Sherpa

• Parameterized Forward Fitting of the
data

• Assuming statistics - typically χ2

• Modified/weight χ2 to account for low
counts

• Bias when the true distributions are
not normal.

• Poisson data - need to use the
Poisson likelihood (e.g. Cash)

• MCMC methods probe the entire
parameter space and do not get stuck
in local minima (i.e. it can get out).
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Bayesian Model For Low Counts Data

Bayesian Framework

p(θ|d,I) = 
p(d|θ,I)p(θ|I)

p(d|I)Posterior
distribution

priorlikelihood

constant
θ - model parameters
d - observed data

I - initial information

p(d|λs,λb,I) = 
exp-(λs+λb) (λs+λb)d

d!
backgroundsource

data

Poisson Likelihood
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Bayesian Model For Low Counts Data

Model Predicted X-ray Spectra

Prior

• allows us to include a priori knowledge,
e.g. range of parameters

• non-informative - e.g. flat within the range
• normal, log-normal, γ - gamma etc.

 Predicted
  Intensity

Instrument
Response

Source
Model
Intensity

BackgroundEffective 
 Area= ( x ) +

θs parametersModel
λs(θs) + λb(θb)

θb parameters

Combining information

flat
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24Simulations from Posterior
• Example:

• An absorbed power law model  =>  M j(a,Γ,NH) = a*Ej
-Γ * fj(NH)

• Poisson Likelihood:

e-Mj Mj
dj

                 dj!

Log-likelihood               ∑ -Mj + dj log(Mj)      ( similar to Cash)

Gaussian distributions are typical prior distributions for (a,Γ,NH )  and

Log Posterior Distribution is then:

 ∑[-Mj + dj log(Mj) ] +  [ log G(log(a),µa,σa) + log G(Γ,µΓ,σΓ)

+ log G(NH ,µN,σN) ]

∏
j=1

J

j

j
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25Simulations from Posterior

∑[-Mj + dj log(Mj) ] +  [ log G(log(a),µa,σa) + log G(Γ,µΓ,σΓ) 

+ log G(NH ,µN,σN) ]
j

Likelihood prior

Data

Model

Compute Likelihood

prior

Draw parameters

Accept/Reject 
Update parameters

Calibration
Simulation from the posterior distribution
requires careful and efficient algorithms:

Draw parameters from a "proposal
distribution'', calculate likelihood and
posterior probability of the "proposed''
parameter value given the observed
data, use a Metropolis-Hastings criterion
to accept or reject the "proposed" values.

Included in pyBlocxs:
http://hea-www.harvard.edu/AstroStat/pyBLoCXS/
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Application: Systematic Errors

Calibration Uncertainties
Chandra ACIS-S Effective Area

• Non-linear errors cannot simply add to
stats errors.
• Include a draw from an ensemble of
effective area curves in the simulations.

Draw effective area

Data Model

Compute Likelihood

prior

Draw parameters

Accept/Reject 
Update parameters

Calibration

Drake et al. 2006 Proc. SPIE, 6270,49
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Application: Calibration Uncertainties

Lee et al 2011, ApJ 

Effects of ARF uncertainty on
parameters

Simulations of 105 counts  
Sim1: Γ=2 NH=1e23
Sim2: Γ=1 NH=1e21

Sim1 Sim2

Deviations from the default ARF (A0)
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28Fitting: Optimization Methods
• Optimization - finding a minimum (or maximum) of a function:

     “A general function f(x) may have many isolated local minima, non-isolated
minimum hypersurfaces, or even more complicated topologies. No finite
minimization routine can guarantee to locate the unique, global, minimum of
f(x) without being fed intimate knowledge about the function by the user.”

• Therefore:
1. Never accept the result using a single optimization run; always test the minimum using a

different method.

2. Check that the result of the minimization does not have parameter values at the edges of the
parameter space. If this happens, then the fit must be disregarded since the minimum lies
outside the space that has been searched, or the minimization missed the minimum.

3. Get a feel for the range of values of the fit statistic, and the stability of the solution, by starting
the minimization from several different parameter values.

4. Always check that the minimum "looks right" using a plotting tool.



X-ray AstronomySchool, August 2011Statistics,
Aneta Siemiginowska

29
Fitting: Optimization Methods

• “Single - shot” routines, e.g, Simplex and Levenberg-
Marquardt

     start from a guessed set of parameters, and then search to improve
the parameters in a continuous fashion:

– Very Quick
– Depend critically on the initial parameter values
– Investigate a local behaviour of the statistics near the guessed parameters, and

then make another guess at the best direction and distance to move to find a
better minimum.

– Continue until all directions result in increase of the statistics or a number of steps
has been reached

• “Scatter-shot” routines, e.g. Monte Carlo
   examines parameters over the entire permitted parameter space to

see if there are better minima than near the starting guessed set of
parameters.
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Simplex and Moncar fit

Good fit

Example: Spectral Fit with 3 methods
Data: high S/N simulated ACIS-S spectrum of the two temperature plasma

Model: photoelectric absorption plus two MEKAL components
(correlated!)

Method       Number             Final
                 of Iterations    Statistics
-----------------------------------------
Levmar               31          1.55e5
Simplex          1494          0.0542
Moncar         13045           0.0542Start fit from the same initial parameters

Figures and Table compares the
efficiency and final results

Levmar fit

Bad fit

Data and Model with initial parameters
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Statistics vs iteration Temperature

2D slice of Parameter Space
probed by each method

minimum

minimum

Local
minimum

Statistics  vs. Temperature

levmar

simplex

moncar

Optimization Methods: Probing
Parameter Space
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Optimization Methods:

Summary

•  “levmar” method is fast,  very sensitive to initial parameters, performs
well for simple models, e.g. power law, one temperature models, but fails
to converge in complex models.

• “simplex” and “moncar” are both very robust and converge to global
minimum in complex model case.

• “simplex” is more efficient than “moncar”, but “moncar” probes larger part
of the parameter space

•  “moncar” or “neldermead” should be used in complex models with
correlated parameters
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Final Analysis Steps

• How well are the model parameters constrained
by the data?

• Is this a correct model?
• Is this the only model?
• Do we have definite results?
• What have we learned, discovered?
• How our source compares to the other sources?
• Do we need to obtain a new observation?
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Essential issue = after the best-fit parameters are found estimate the
confidence limits for them. The region of confidence is given by
(Avni 1976):

 χ2
α = χ2

min +Δ(ν,α)

  ν - degrees of freedom
  α - significance
  χ2

min  - minimum

  Δ depends only on the number of
         parameters involved
        nor on goodness of fit

Significance      Number of parameters
    α     1      2        3

 0.68  1.00  2.30   3.50
 0.90  2.71  4.61   6.25
 0.99  6.63  9.21   11.30
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Best fit

1σ

2σ

3σ

St
at

is
tic

s

parameter

Best fit

Well behaved parameter space
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Not well-behaved Surface

Non-Gaussian Shape
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37Distributions of Flux and
Parameters

Monte Carlo Simulations to characterize parameters and flux and distributions. 
Plot the PDF and CDF and calculate Quantiles of 68% and 95%

P
ro

ba
bi

lit
y 

D
is

tri
bu

tio
n

68%

68%

kT

fit

FLUX

fit

FLUX fit

95%
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38Goodness of  Fit

Need simulations for the fit with likelihood statististics (Cash
in Sherpa) to obtain the shape of the distribution.

68% 95%95%

Statistics
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How to choose between different models?

Does a more complex model better describe
the data?

Model Selection
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1/ Set up 2 possible exclusive hypotheses - two models:

M0 – null hypothesis – formulated to be rejected
M1 – an alternative hypothesis, research hypothesis

each has associated terminal action

2/ Specify a priori the significance level α

choose a test which:
    - approximates the conditions
    - finds what is needed to obtain the sampling 

distribution and the region of rejection, whose area
is a fraction of the total area in the sampling 
distribution

3/ Run test: reject M0 if the test yields a value of the statistics
whose probability of occurance under M0 is < α

4/ Carry on terminal action
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Comparison of distributions p(T | M0) (from which one determines the significance α) and p(T | M1)
(from which one determines the power of the model comparison test 1 – β) (Eadie et al. 1971,
p.217)

α- significance
=> Probability limit
of rejecting the null
when it is true.

(1-β) – power of test
=> correctly reject
H0 when it is false
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• Likelihood Ratio Test

Ratio of likelihood values:
     LRT = 2[ln p(d|M1) - ln p(d|M0)]

• F-test
For Gaussian data statistic follows F distribution

•  Tests only valid if
• The models are nested
• Not on the boundary of the parameter space
• Asymptotic limit has been reached
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Monte Carlo Simulations

• Simulations to test for more complex models, e.g. addition of an
emission line

• Steps:
• Fit the observed data with both models, M0, M1
• Obtain distributions for parameters
• Assume a simpler model M0 for simulations
• Simulate/Sample data from the assumed simpler model
• Fit the simulated data with simple and complex model
• Calculate statistics for each fit
• Build the probability density for assumed comparison

statistics, e.g. LRT and calculate p-value

Example:
Visualization, here accept
more complex model, p-value
1.6%
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Would we accept Model1?

From the Statistics chapter in “Handbook of X-ray Astronomy” 



X-ray AstronomySchool, August 2011Statistics,
Aneta Siemiginowska

45
Bayesian Model Comparison

Bayes’ theorem can also be applied to model comparison:

 p(M) is the prior probability for M;
 p(D) is an ignorable normalization constant; and
 p(D | M) is the average, or global, likelihood:

In other words, it is the (normalized) integral of the posterior distribution over all
parameter space.  Note that this integral may be computed numerically

( | )( | ) ( ) .
( )

p D Mp M D p M
p D
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Bayesian Model Comparison

To compare two models, a Bayesian computes the odds, or odd ratio:

where B10 is the Bayes factor. When there is no a priori preference for either
model, B10 = 1 of one indicates that each model is equally likely to be
correct, while B10 ≥ 10 may be considered sufficient to accept the alternative
model (although that number should be greater if the alternative model is
controversial). BUT BF ARE NO CALIBRATED IN GENERAL
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Summary

• Motivation: why do we need statistics?
• Probabilities/Distributions
• Poisson Likelihood
• Parameter Estimation - Optimization, MC
• Model Selection and Statistical Tests
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48Conclusions
Statistics is the main tool for any astronomer who
need to do data analysis and need to decide about the
physics presented in the observations.

References:

“Practical Statistics for Astronomers”, Wall & Jenkins, 2003
 Cambridge University Press

Gelman, Carlin, Stern and Rubin, 2003 2nd edition “Bayesian Data Analysis”
   http://www.stat.columbia.edu/~gelman/book/

Attend Astrostatistics Sessions at the Scientific Meeting.

Astrostatistics Collaboration at CfA: 
http://hea-www.harvard.edu/AstroStat/

Eadie et al 1976, “Statistical Methods in Experimental Physics”
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