X-raying Galaxies: A Chandra Legacy Q. Daniel Wang University of Massachusetts, Amherst

Chandra ACIS observation of M83; Soria & Wu (2002)

ROSAT all-sky survey in the ³/₄-keV band

X-ray absorption line spectroscopy: adding depth into the map

X-ray absorption line spectroscopy is powerful !

Tracing all K transitions of metals \rightarrow all three phases of the ISM. Not affected by photoelectric absorption \rightarrow unbiased measurements of the global ISM.

LETG+HETG spectrum of LMXB 1820-303

Yao & Wang 2006, Yao et al. 2006, Futamoto et al 2004

Spectroscopic diagnostics

•One line (e.g., OVII K α) \rightarrow velocity centroid and EW \rightarrow constraints on the column density, assuming b and T •Two lines of different ionization states (OVII and OVIII K α) \rightarrow T •Two lines of the same state (K α and K β) \rightarrow b

·Lines from different species \rightarrow abundance f_a

Joint-fit of absorption and emission data --> pathlength and density
Multiple sightlines --> differential hot gas properties

LMC X-3 as a distance marker

- BH X-ray binary undergoing Roche lobe accretion
- 50 kpc away $V_s = +310$ km/s Away from the

LMC main body

Wang et al. 2005

LMC X-3: absorption lines

•The line centroids of the OVI and OVII lines are consistent with the Galactic origin. • N_0 ~1.9 x 10¹⁶ atoms/cm², similar to those seen in AGN spectra!

•b ~ 79 km/s

Joint-fit to the Suzaku XIS diffuse emission spectrum

100 ks Suzaku observations of LMC X-3 off-fields

(Yao, Wang, et al. 2008)

Single temperature fit \rightarrow T= 2.4 x 10⁶ K, significantly higher than that inferred from the Xray absorption lines.

Joint-fit to the absorption and emission data gives

- $n_e = (3.6 \times 10^{-3} \text{ K}) e^{-|z|/2.8 \text{ kpc}};$
- T= (2.4×10⁶ K) $e^{-|z|/1.4 \text{ kpc}}$
- →P/k ~ 1.1×10⁴ cm⁻³ K, assuming filling factor =1.
- → This thick hot disk can explain all the OVI absorption, except for ~10% of high-v OVI emission.

Galactic global hot gas properties

- Thermal property:
 - mean T ~ $10^{6.3}$ K toward the inner region
 - ~ 10^{6.1} K at solar neighborhood
- Velocity dispersion from ~200 km/s to 80 km/s
- Abundance ratios ~ solar
- Structure:
 - A thick Galactic disk with a scale height of ~ 2 kpc,
 ~ the values of OVI absorbers and free electrons
 - Enhanced hot gas around the Galactic bulge
 - No evidence for a large-scale (r ~ 10^2 kpc) X-ray-emitting/ absorbing halo with an upper limit of N_H~1 x10¹⁹ cm⁻².

No evidence for X-ray line absorption by hot gas in intervening groups of galaxies

Sightline: 3C 273 Total exposure: 530 ks Selected galaxies: < 500 kpc projected distance.

BACKGROUND AGNS, *Chandra* OBSERVATIONS, AND THE NUMBER OF INTERVENING GALAXIES

Src. Name	$z_{ m AGN}$	No. of Obs.	Exp. (ks)	No. of ^a gal.
H1821+643	0.297	5	600	7(5)
3C 273	0.158	17	530	$47(\dot{4}\dot{4})$
PG 1116+215	0.176	1	89	12(11)
PKS 2155-304	0.117	46	1075	14(13)
Ton S180	0.062	1	80	3(3)
PG 1211+143	0.081	3	141	46(45)
Mrk 766	0.013	1	90	13(12)
H1426 + 428	0.129	3	184	
1H 0414 + 009	0.287	2	88	4(2)
Mrk 509	0.034	1	59	1(1)
IC 4329a	0.016	1	60	3(3)
Fairall 9	0.047	1	80	1(1)
Sub total:		82	3076	154(143)

Vertical red bars: expected group absorption line positions

Yao, Y., DW, et al. (2009)

Blue lines: Galactic absorption

Stacking of absorption line spectra according to intervening galaxy/group redshifts

With an effective exposure: ~ 10 Ms, no absorption is detected!
N(OVII) < 10¹⁵ cm⁻², or < 1/10 of the column density observed around the Milky Way.
Groups typically contain little gas at T~10^{5.5}-10^{6.5} K, unless the Oxygen abundance

- is < 1/10 solar.
- Is the WHIM a hype?

Galaxy formation and evolution context

Stars and the ISM accounts for 1/3-1/2 of the baryon expected from the gravitational mass of a galaxy. Where is this missing baryon matter?

- In a hot gaseous galactic halo?
- Or having been pushed away? Both are related to the galactic energy feedback.
- Without the feedback, we have the "overcooling" problem: Too much condensation to be consistent with observations (e.g., Navarro & Steinmetz 1997).

Understand the Galactic feedback is essential to the study of the galaxy formation and evolution!

Feedback from starburst galaxies

M82: ~6' FoV

X-ray composite image from Chandra

Composite of optical (HST), infrared (Spitzer), and X-ray (Chandra) images

- Soft X-ray arises primarily from the interplay between a superwind and entrained cool gas clouds.
- Comparison between the data and simulations shows the superwind has T \sim 3-8 $\times10^7$ K and a mass rate of \sim 2 $M_{\odot}/yr.$
- Bulk of the starburst mechanical energy escapes from the galaxy → strong effect on the galactic environment!

D. Strickland et al. (2006, 2009)

Feedback from disk-wide star formation

Red – Hα Green – Optical R-band Blue – 0.3-1.5 keV

- Scale height ~ 2 kpc + more distant blubs.
- $T_1 \sim 10^{6.3}$ K, $T_2 > 10^{7.1}$ K
- $L_x(diffuse) \sim 4 \times 10^{39} \text{ erg/s}$

NGC 5775 Li, J. et al. (2008)

• Average T ~ 6 x 10⁶ K

- Lx ~ 4 x 10³⁹ erg/s, ~ 2% of Type Ia SN energy
- Not much cool gas to hide/convert the SN energy

NGC 4594 (Sa)

Hubble Optical

Li et al. 2007

The missing energy and large L_X/L_K dispersion problems of low-mass ellipticals

- Energy input from Ia SNe: ~ 0.2 $/10^{10}L_{\odot B}/100yr$ + velocity dispersion among stars.
- Observed L_X has a large dispersion, but is < 10% of the energy inputs.
- Mass loss from evolved stars: ~ 0.2 M $_{\odot}/10^{10}L_{\odot\,B}/yr.$
- Specific temperature: kT ~ 1-2 kev.
- Fe abundance $\sim Z_*+5(M_{SN,Fe}/0.7M_{\odot})$.

Observations of stellar feedback

 Both gas temperature and Fe abundance are less than the expected.

Feedback and galaxy formation: 1-D simulations

Evolution of both dark and baryon matters (with the final total mass of 10^{12} M $_{\odot}$).

Initial spheroid formation (5×10^{10} M_{\odot}) \rightarrow starburst \rightarrow shock-heating and expanding of surrounding gas. Later Type Ia SNe \rightarrow wind/outflow, maintaining a low-density, high-T gas halo and preventing a cooling flow.

Outflow can be long-lasting \rightarrow higher Lx and more extended profile.

The dependence on the feedback strength, galaxy mass, and environment $\rightarrow L_x/L_B$ dispersion.

2-D simulations of the feedback: bulge wind

Setup: an ellipsoid bulge (q=0.6), a disk, and an NFW halo

- Qualitatively consistent with the 1-D results
- Instabilities at the contact discontinuities
 → formation of HVCs?

Tang & Wang (2009)

Subsonic Outflow: 3-D Simulations

Fe abundance map (Tang & Wang in prep)

- Adaptive mesh refinement →
 ~2 pc spatial resolution
- Sporadic SNe in both time and space
- Continuous and smooth mass injection, following stellar light
- Broad temperature and density distributions → Low X-ray measured temperature and metal abundance if modeled with a 1- or 2-T plasma
- Fe ejecta moves much faster than stellar mass-loss materials.

3-D Subsonic Outflow Simulations: Results

Positive temperature gradient, mimicking a "cooling flow"! Positive Fe abundance gradient, as observed in central regions of ellipticals

Summary

- At least two components of diffuse hot gas:
 - Disk typically driven by massive stars
 - Bulge heated primarily by Type-Ia SNe
- Characteristic extent ~ a few kpc, except for starburst galaxies.
- Temperature ~ a few 10⁶ K. but also evidence for a poorly constrained T >~ 10⁷ K component.
- Stellar feedback can play a key role in galaxy evolution:
 - Initial burst leads to the heating and expansion of gas beyond the virial radius.
 - Ongoing feedback can keep this circum-galactic medium from cooling and maintain a hot gas outflow.
 - \rightarrow explaining the missing galactic feedback, the baryon deficit around galaxies, and the passive evolution of stellar spheroids.
- 3-D structures significantly affect X-ray measurements (Lx, T, intensity profile, and Fe abundance).

Galaxies such as the MW evolve in hot bubbles of baryon deficit!

- Explains the lack of large-scale Xray halos.
- Bulge wind drives away the present stellar feedback.

3-D Effects

• Large dispersion \rightarrow

- enhanced emission at both low and high temperatures
- Overall luminosity increase
 by a factor of ~ 3.
- Low metallicity if modeled with a 1-T plasma.
- Consistent with the 1-D radial density and temperature distributions, except for the center region.

Assuming solar abundances and CIE

Galactic bulge and elliptical galaxies

M.Revnivtsev et al. (2009)

Conclusions

- Diffuse hot gas is strongly concentrated toward galactic disks/bulges (< 20 kpc) due to the feedback.
- But the bulk of the feedback is not detected and is probably propagated into very hot (~10⁷ K) halos.
- The feedback from a galactic bulge likely plays a key role in galaxy evolution:
 - Initial burst led to the heating and expansion of gas beyond the virial radius
 - Ongoing feedback keeps the gas from forming a cooling flow and starves SMBHs
 - Mass-loaded outflows account for diffuse X-ray emission from galactic bulges.

Galaxies like ours reside in hot bubbles! No overcooling or missing energy problem!