ULXS (ultraluminous X-ray sources) What have we learned in 10 years?

Roberto Soria University College London

D Swartz, A Tennant (MSFC) M Pakull, F Grise' (Strasbourg) K Wu, M Cropper (MSSL) G Fabbiano, G Risaliti (CfA) Z Kuncic (Sydney Uni)

What we wanted to know in 1999

- ★ Maximum luminosity of accreting non-nuclear BHs
- ★ BH mass range
- ★ BH accretion states
- ★ Masses, ages, types of donor stars
- ★ BH formation processes
- Power budget (radiation, advection, jet, wind?)
- Evidence of intermediate-mass BHs?

1. Luminosities

Strong beaming now ruled out (only <~ a few)

Cutoff or break at $L_X \approx (2-3) \times 10^{40}$ erg/s?

Swartz et al 2004 Grimm et al 2003

(Most) ULXs = upper end of high-mass X-ray binaries?

1. Luminosities

But also a few sources with $L_X > 3 \times 10^{40}$ erg/s

Cartwheel:	L _{0.3-10} ~ 1E41 erg/s
M82:	L _{0.3-10} ~ 1E41 erg/s
NGC2276:	L _{0.3-10} ~ 1E41 erg/s
NGC5775:	L _{0.3-10} ~ 8E40 erg/s
ARP240:	L _{0.3-10} ~ 7E40 erg/s
NGC7714:	L _{0.3-10} ~ 7E40 erg/s

ESO243-49: L_{0.3-10} ~ 1E42 erg/s ???

Different populations? ULXs and HLXs?

2. Optical counterparts

Very few ULXs in super star clusters Most ULXs in OB associations

Most ULXs in moderately young regions Typical age of the stellar population ~ 10—25 Myr

Most ULXs consistent with B-type donor filling its Roche Lobe But also 2 Wolf-Rayet donors (Prestwich et al 2007, Liu 2010)

Duration of active phase ~ 0.5—1 Myr

Ongoing efforts to determine mass functions

3. BH masses

No kinematic masses available (yet)

Only indirect methods to estimate BH masses

Eddington limit

Most ULXs with BH masses ~ $30-100 M_{sun}$?

X-ray spectra and time variability

Very model-dependent In Galactic BHs, works well only for thermal state (standard disk)

We thought it was so simple....

F(0.3-10 keV)

1 keV

Very high state Heavily Comptonized disk Radio flaring

0.1 High/Soft state Standard disk Radio quiet

'n

1

0.01

Low/Hard state Jet? Corona? ADAF? CENBOL? Radio loud

5 keV

...but ULXs are different

>~ 90% are dominated by Comptonized emission ("power-law")

Some have a minor "soft excess" at T ~ 0.2 keV (Outer disk? Smeared absorption? Reflection?) and/or a high-energy downturn (suggesting $T_e \sim 5$ —10 keV)

• Most of the very luminous ULXs have hard spectrum (power-law photon index $1 < \Gamma < 2$, with L_x ~ 1E40 erg/s)

ULX fluxes may fluctuate by a factor of 10 but...
no hard-spectrum ULX has ever been seen
to switch to high/soft state (standard thin disk)

X-ray spectra dominated by Comptonized emission ("power-law")

Chandra survey of 28 ULXs with $L_x \ge 1E40$ erg/s (Soria et al in prep)

X-ray spectra dominated by Comptonized emission ("power-law")

Chandra survey of 28 ULXs with $L_x >= 1E40$ erg/s (Soria et al in prep)

"Ultraluminous state"? (Roberts 2007, Soria 2007)

4. BH accretion states

Standard disk Thermal emission $L_{disk} \ll 30\% L_X$

scattering region Comptonized emission $L_{po} \approx 70 - 100\% L_X$ Large R_c Low T_{in} Low f_{qpo}

mdot ~ 1—20 $L_X \approx \left(1 + \frac{3}{5} \ln \dot{m}\right) L_{Edd} < 4L_{Edd}$ $\tau \sim a \text{ few}$ $T_e \sim 5$ —10 keV $M_{BH} < 100 M_{sun}$

Why always Compton-dominated in the high state?

Why is the corona always there? (denser, cooler than in low/hard state)

Higher accretion rate + Higher evaporation rate into corona

Difference between *magnetized accretion flows* (low-mass BH binaries) and *non-magnetized accretion flows* (ULXs have OB donors)

(Soria & Wu 2010, in prep)

5. BH formation process

How to form a 50 M_{sun} BH?

Very massive stars (M_{in} ~ 100—150 M_{sun}) Metal poor environment (Z ~ 0.1 solar) Direct collapse into massive BH

(work by Pakull, Zampieri, Prestwich, Soria, ...)

"Exotic" processes NOT NEEDED (Pop III remnants, "superstars" in cluster cores, ...)

6. Jets and outflows Often $P_J + P_w \sim L_x$ Many ULXs surrounded an optical or radio bubble

Holmberg IX X1 Pakull & Mirioni 2002; Grise' et al 2008

IC342 X1 ("foot nebula") Pakull & Mirioni 2002; Feng & Kaaret 2008

X-1

E

15" ~ 340 pc

6. Jets and outflows ULX bubbles

NGC1313 X2

Grise' et al 2008 Grise' et al 2010 in prep

NGC5408 X1

6

Kaaret et al 2003 Soria et al 2006 Lang et al 2007

6. Jets and outflows ULX bubbles

Size ~ 50—400 pc Age ~ 0.5—1 Myr

S26 in NGC 7793

(Magellan image from J Liu)

Chandra study: Pakull et al 2010, in prep $H\alpha$ contours from CTIO (SINGS survey)

6. Jets and outflows

ULXs blow bubbles

Energy in the bubbles ~ 1E52 erg (> SN)

In some sources, $L_x << 1E39 \text{ erg/s today, but } P_w >~ 1E39 \text{ erg/s}$ "ULXs in low/hard state" eg, S26 in NGC 7793 IC10 X1 (M_{BH} ~ 30 M_{sun}, Prestwich et al 2007)

Test for BH feedback at very high accretion rates Comparisons with early quasars?

7. Outliers (IMBHs?)

ULX in M82 may be true IMBH candidate Diskbb spectrum? (Feng & Kaaret 2009, in press)

> Incipient nuclear BH of M82? Nucleus of accreted satellite?

L_x ~ 5E40 erg/s

Nuclear BHs of satellite galaxies may be confused for ULXs

7. Outliers (IMBHs?)

3 or 4 "supersoft ULXs" (T_{bb} < 100 eV) still unexplained (IMBHs? thick outflows, expanded WD photospheres?) (J Liu, A Kong et al)

Other "unusual ULXs" proved to be background AGN or foreground CV

Claim of a ULX with $L_x \sim 1E42$, $M_{BH} > \sim 1000 M_{sun}$

soft X-ray spectrum (Farrell et al 2009, Nature) No optical counterpart down to V \sim 26.5 mag

But I suspect it's a foreground neutron star, perhaps with brown-dwarf or M-dwarf companion

How to make progress: we need...

Timing studies, QPOs, power spectrum at v > 1 Hz

Kinematic BH masses from optical spectroscopy

VLA studies of radio cores (5 GHz flux <~ 0.01 mJy)</p>

 X-ray spectra > 10 keV, to measure photon index and cutoff energy