Chandra and SZA Observations of Galaxy Clusters at z≥1

Tom Culverhouse University of Chicago tlc@uchicago.edu

SZA Collaboration

University of Chicago

John Carlstrom Tom Culverhouse Erik Leitch Dan Marrone Kelsey Morgan Clem Pryke Megan Roscioli Matthew Sharp Alan Zablocki

Columbia University

Amber Miller Tony Mroczkowski Stephen Muchovej

University of Alabama, Huntsville

Max Bonamente Nicole Hasler Esra Bulbul Nazirah Jetha

Owens Valley Radio Observatory

David Hawkins James Lamb David Woody

NASA MSFC Marshall Jov

The Sunyaev-Zeldovich Effect

- CMB photons inverse compton scatter off keV e⁻ in cluster gas
- Net increase in photon energy

L.P. Van Speybroeck

- Spectral shift to higher frequency
- Secondary CMB temp. anisotropy on
- ~1' scales
- decrement below ~220 GHz

The Sunyaev-Zeldovich Effect

 Quantify by compton y-parameter; brightness indept. of redshift:

$$y \equiv \frac{k_B \sigma_T}{m_e c^2} \int n_e T_e \, d\ell$$

$$\Delta I_{\rm T} = I_0 y f(x) (1 + \delta_{\rm T})$$

Integral of y prop. to thermal energy content:

$$Y = \int y \, d\Omega \propto rac{1}{D_{ heta}^2} \int n_{
m e} T_{
m e} dV_{
m e}$$

• $Y_x \equiv M_g T_e$ derived; SZE measures Y directly • Self-similar scaling: $YD_{\theta}^2 \propto M_{gas}^{5/3} E(z)^{2/3}$

Motivation for z≥1

- Scaling relationships not well studied implications for structure formation and evolution
- Useful for cosmology difference between expectation of different models more pronounced at high redshift
- X-rays + SZE → calibrate mass-observable relationship (SPT, ACT, APEX...)

The Sunyaev-Zeldovich Array

- Eight 3.5m diameter telescopes
- Six close-packed sensitive to typical cluster scales
- Two 'outriggers' to remove radio sources
- 30 and 90 GHz, 8 GHz bandwidth

High-z Sample

- Ad-hoc 11-cluster sample in available dec range
- Most massive cluster candidates from recent IR surveys
- Massive serendipitous detections with confirmed redshifts
 Observe at 30GHz; detections for clusters with M > 10¹³

Cluster	z	R.A.	decl.	Discovery	X-ray Data	SZE Constraint
JKCS 041 ^a	1.90	02 26 44	-04 41 37	IR	Yes	Upper Limit
2XMM J083026.2+524133 ^b	0.99	08 30 26	$+52 \ 41 \ 33$	X-ray	Yes	Yes
$RX J0848 + 4453^{c}$	1.27	$08 \ 48 \ 35$	+44 53 49	IR	Yes	Upper Limit
$RX J0849 + 4452^{d}$	1.26	$08 \ 49 \ 58$	+44 51 55	X-ray	Yes	Upper Limit
$RX J0910 + 5422^{e}$	1.11	$09 \ 10 \ 44$	+54 22 09	X-ray	Yes	Upper Limit
$RX J1252-2927^{f}$	1.24	12 52 54	-29 27 17	X-ray	Yes	Upper Limit
$ m ClJ1415.1{+}3612^{g,h}$	1.03	14 15 11	+36 12 03	X-ray	Yes	Yes
$ISCS1438.1 + 3338^{i}$	1.41	$14 \ 38 \ 09$	+34 14 19	IR	No	Upper Limit
SpARCSJ1638 ^j	1.20	$16 \ 38 \ 52$	$+40 \ 38 \ 43$	IR	No	Upper Limit
XMMU J2235-2557 ^k	1.39	$22 \ 35 \ 21$	-25 57 42	X-ray	Yes	Yes
XMMXCS J2215.9-1738 ¹	1.46	$22 \ 15 \ 58$	$-17 \ 38 \ 03$	X-ray	Yes	Upper Limit

sun

Culverhouse et al 2009 (in prep.)

Detected Clusters

- z =1.39
- $M_{g} = 0.95 \pm 0.1 \times 10^{13} M_{sun}$
- $YD_{A}^{2}=1.7\pm0.4 \times 10^{-5} Mpc^{2}$

• z=1.03• $M_a=1.1\pm0.1 \times 10^{13} M_{sun}$

- z=0.99
- $M_g = 1.4 \pm 0.2 \times 10^{13} M_{sun}$
- YD_A²=2.0±0.4 x10⁻⁵ Mpc²

 $(M_{g}, Y \text{ within } r_{2500} \text{ to compare to previous measurements})$

• YD²=1.3±0.4 x10⁻⁵ Mpc²

Scaling Relation Comparison

• Compare to low-z sample of Bonamente et al 2008

 $YD_A^2 \propto M_{gas}^{5/3} E(z)^{2/3}$

- 6 clusters with enough X-ray photons for M_a constraint
- Upper limits for clusters with no SZ detection
- Mild tension with low-z, though intrinsic scatter not included
- Larger sample required to make stronger statement

Current/Future Directions

- Combine with CARMA 6x10m telescopes at $30GHz \rightarrow 10-45$ " angular resolution in SZE
- Study cluster gas morphology
- Insights into cluster evolution, mergers

Conclusions

- SZA an excellent follow-up instrument for cluster candidates with $M_g > 10^{13} M_{sun}$ public proposal time
- similar Y constraints in few 10s of hrs for clusters of equal gas mass regardless of distance
- No detections of IR-selected clusters bias towards high f ?
- Mild tension with low-z larger cluster sample needed (evolution, intrinsic variance) → work in progress
- High resolution SZE imaging soon