Huntsville, Al Oct 25 2007

Scaling Relations from Sunyaev-Zel'dovich Effect and Chandra X-ray measurements of high-redshift galaxy clusters

> Max Bonamente (UA-Huntsville/NASA MSFC) Marshall Joy (NASA MSFC) Samuel LaRoque (U. Chicago) John Carlstrom (U. Chicago) Daisuke Nagai (Caltech) Dan Marrone (U. Chicago)

- Obtain observational relationships among SZE and X-ray quantities: kT, M_{tot}, M_{gas} and Y
 Establish SZE proxies for mass and temperature that can be used for SZE surveys
- Compare observed relationships with self-similar scaling relations and numerical simulations

Understand certain aspects of the physics of galaxy clusters (pre-heating, non-thermal pressure, etc.)

Sunyaev-Zel'dovich Effect and X-ray Observations

 $S_{X} = \frac{1}{4\pi (1+z)^{4}} \int n_{e}^{2} \Lambda_{ee} dl$

SZE/X-ray sample

Have SZE/X-ray available for 38 clusters, z=0.14-0.89 (Bonamente et al. 2006; LaRoque et al. 2006)

CLUSTER	Z	CLUSTER	Z
CL 0016+1609	0.541	ABELL 1689	0.183
ABELL 68	0.255	RX J1347.5-1145	0.451
ABELL 267	0.230	MS 1358.4+6245	0.327
ABELL 370	0.375	ABELL 1835	0.252
MS 0451.6-0305	0.550	MACS J1423.8+2404	0.545
MACS J0647.7+7015	0.584	ABELL 1914	0.171
ABELL 586	0.171	ABELL 1995	0.322
MACS J0744.8+3927	0.686	ABELL 2111	0.229
ABELL 611	0.288	ABELL 2163	0.202
ABELL 665	0.182	ABELL 2204	0.152
ABELL 697	0.282	ABELL 2218	0.176
ABELL 773	0.217	RX J1716.4+6708	0.813
ZW 3146	0.291	ABELL 2259	0.164
MS 1054.5-0321	0.826	ABELL 2261	0.224
MS 1137.5+6625	0.784	MS 2053.7-0449	0.583
MACS J1149.5+2223	0.544	MACS J2129.4-0741	0.570
ABELL 1413	0.142	RX J2129.7+0005	0.235
CL J1226.9+3332	0.890	MAC J2214.9-1359	0.450
MACS J1311.0-0310	0.490	MACS J2228.5+2036	0.412

SZE/X-ray data modeling

- Isothermal β model, excised 100 kpc from X-ray data to avoid cool core
- Analytical expressions for SZE decrement and X-ray surface brigthness

$$n_{e}(r) = n_{e0} \left(1 + \frac{r^{2}}{r_{c}^{2}}\right)^{-3/2\beta} \Rightarrow \begin{cases} \Delta T = \Delta T_{0} \left(1 + \frac{\theta^{2}}{\theta^{2}}\right)^{(1-3\beta)/2} \\ S_{x} = S_{x0} \left(1 + \frac{\theta^{2}}{\theta^{2}_{c}}\right)^{(1-6\beta)/2} \end{cases}$$

- Tested versus a non-isothermal, double- β model: same results in measurements of D_A and masses (Bonamente et al. 2006; LaRoque et al. 2006)
- Advantage: single average temperature <T> for scaling relations
- More sophisticated modeling in progress using Sunyaev-Zeldovich Array data (see T. Mrokzkowski's poster)

- Simple self-similar model of collapse of overdense structures (Kaiser 1986; Binney and Tremaine 1987; Bryan and Norman 1997; etc.): Isothermal, late-formation, neglects non-gravitational processes
- Prediction of simple T Mass relationship: $T \propto M_{\Lambda}^{2/3} E(z)^{2/3}$
- Use overdensity Δ =2500, reachable for all clusters in sample
- Y is the *integrated Compton-y parameter* $Y \equiv \int y d \Omega \propto \frac{1}{D^2} \int n T dV$ Use Y D_A² as the *intrinsic* Y (as in da Silva et al. 2004, Nagai 2006)
- Apply to the Kaiser (1986) model to obtain <u>SZE scaling relations:</u>

$$\begin{cases} Y D_{A}^{2} \propto f_{gas} T^{5/2} E(z)^{-1} \\ Y D_{A}^{2} \propto f_{gas} M^{5/3}_{tot} E(z)^{2/3} \\ Y D_{A}^{2} \propto f^{-2/3}_{gas} M^{5/3}_{gas} E(z)^{2/3} \end{cases}$$

SZE/X-ray Scaling Relations Results (1) : f_{gas} vs. M_{gas}

SZE/X-ray Scaling Relations Results (2) : Y vs. T

Y - T

$\alpha = 2.37 \pm 0.23$ (2.50)

SZE/X-ray Scaling Relations Results (3) : Y vs. M_{gas}

(Bonamente et al. 2008)

SZE/X-ray Scaling Relations Results (4) : Y vs. M_{tot}

Comparison of joint analysis with SZ-only analysis

- Motivation: upcoming SZE surveys (e.g., South Pole Telescope) will not have full benefit of X-ray observations
- Analyze a sub-sample of 25 clusters using only the SZ data, analysis is fully independent of X-ray data:
- Estimate the plasma temperature and r_{2500} using the assumption of constant f_{gas} and solving iteratively the equation

$$M_{gas}(r_{2500}) = f_{gas} M_{tot}(r_{2500})$$

in order to find consistent estimates of T and r_{2500} (Joy et al. 2001)

- Fix β =0.7 due to limited spatial resolution of SZE data
- Obtain masses, T and Y and compare with joint X-ray/SZE measurements

Comparison of joint analysis with SZ-only analysis

SZE / X-ray Scaling Relations: preliminary comparison with simulations

 Test the effect of cooling and star formation by comparison with the simulations of *Nagai (2006)*, *ApJ 538, 549*

Conclusions

- Established observationally SZE scaling relations at z<1 for Y M_{tot} , Y M_{gas} , Y T: can obtain T and M from Y.
- Successful comparison with numerical simulations
- SZE surveys upcoming (e.g., **SZA, APEX, SPT, ACT, AMI**) to detect clusters at all z, can implement cosmological tests (e.g., dN(>M)/dz)

FUTURE WORK:

• The *Sunyaev Zeldovich Array* (SZA) has just started operations: Larger FOV (12') than OVRO/BIMA, two bands (~30 and ~90 Ghz), 8 GHz bandwidth

Conclusions

- What the Sunyaev Zeldovich Array can do for scaling relations:
- * High redshift clusters (Muchovej et al. 2007)

- * Extend to lower mass clusters
- ★ Data for complete sample of 35 BCS clusters at z~0.25
- * More accurate modeling of the intra-cluster medium (T. Mroczkowski)

Comparison of Y with Y_{x}

- The X-ray observable $Y_x = M_{gas}(r_{2500}) kT$ proposed as low-scatter proxy of total mass (Kravtsov et al. 2006)
- \bullet Can directly establish equivalence between Y and $Y_{_X}$ using our data

SZE / X-ray Scaling Relations: Comparison with simulations

Test the level of pre-heating (entropy floor) by comparison with the simulations of *McCarthy et al. 2003*, *ApJ 591 526*

