Cluster Cosmology in the *Chandra* Era: Potential, Problems & Prospects

An incomplete & biased sampling

Mark Bautz

MIT Kavli Institute for Astrophysics & Space Research

Overview

- Cosmology & clusters in principle
- The real world according to *Chandra*
- Dealing with it
- Where we stand
- Prospects

Overview

- Cosmology & clusters in principle
- The real world according to Chandra
- Dealing with it
- Where we stand
- Prospects

Leon van Speybroeck

M. Bautz / MIT Kavli Institute

Cosmological Observables

Two paths to knowledge of recent cosmic history:

- Geometry:
 - * Measure (something that depends on) coordinate distance vs. redshift: $D(z) \sim \int dz'/H(z')$
 - * Examples: Standard candle, ruler, baryon fraction
- Growth:
 - * Measure rate of growth of cosmic structure:

 $\delta_0 = g(a) \delta_a; g(a) \sim \Omega_m H(a) \int da' / \{a' H(a')\}^3 (a = 1/(1+z))$

* Examples: Cosmic shear, Cluster abundance

Cosmological Observables

Cosmological Observables

Why Clusters for Cosmology? (The Elevator Pitch)

- Selected clusters can be geometric standards (SZE, f_{baryon})
- Cluster distribution (dN/dz & P(k)) is sensitive to both distance (via dV/dΩdz) and growth history:
 - * Physically independent of "distance-only" metrics
 - * In principle allows test of GR: D(z) & g(z) should match
- Clusters are 'easy' to find (if you know how to look)
- Cluster physics is relatively simple (just ask McNamara & Burns!):
 - * Dominated by gravity
 - * Amenable to simulation
- Complementary to other cosmological probes

The Cluster Hubble Diagram

Two measures of cluster distance:

- X-ray (S_X) + Microwave SZE (ΔT_0) : d ~ $\Delta T_0^2/S_x$ [Bonamente, Joy et al.]
- Baryon fraction:

d ~ $f_{gas}^{2/3}$; ($f_{gas} + f_{stars}$) = Ω_b / Ω_m = constant NB: also yields Ω_b / Ω_m [Allen et al.]

Andrei Kravtsov

Clusters Trace Structure Formation

- Cosmic structure grows via gravitational instability
- The rate of growth is sensitive to the cosmic expansion history & thus to the cosmological model
- The cluster population (e.g. dN/dVdM) is sensitive to cosmology
- Key observational requirement: measure cluster masses
 [Henry, Reiprich & Boehringer, Mohr et al., Vikhlinin et al., Allen & Mantz...]

M. Bautz / MIT Kavli Institute

Cluster complexity: merging Clowe, Markevtich et al. 2006 The Bullet Cluster (Magellan + Chandra) Dark Matter (from lensing) Intracluster plasma (from Chandra)

Eight Years of Chandra 25 October 2007

Eight Years of Chandra 25 October 2007

Clusters in reality according to Chandra

Chandra (& XMM) have shown that clusters aren't so simple:

- Both subtle & spectacular complexity in ICM density
 - ==> mergers, fronts & AGN heating (Markevitch, Vikhlinin, McNamara. Fabian...)
 - ==> evolution of spatial structure (Jeltema, Maughan)
 - ==> 'absence' of high-z 'bright' (cool) cores (Vikhlinin)
- Spectral evidence against simple cooling models
 => AGN heating (Peterson...)
- Confirmation of 'non-self-similar' scaling relations (e.g. L_X vs T)
 => (e.g.) non-gravitational thermodynamics (Vikhlinin, Markevitch, Allen, Ettori..)
- Scatter in mass/observable relations (Maughan, Mantz, O'Hara)
- Variation of f_{baryon} with cluster mass/ temperature (Allen, Vikhlinin)

The message from Chandra

In sum:

- Gravity is not solely responsible for cluster structure & evolution
- Clusters are not, in general, 'relaxed'

So, can we deal with this?:

Can we measure cluster masses well enough to do cosmology?

Cluster Mass Proxies

- Mass is not directly observable, so use observable proxies: N_{gal} , σ_{opt} , Y_{SZE} , L_X , T_{x} , M_{gas} , Y_X ...
- One must know both evolution & scatter in mass-observable relations to do cosmology (& knowing physics would also help!)
- So far, evolution in X-ray observables seems modest, generally consistent with 'gravity only' self-similar picture
- Until recently, scatter seemed large:
 - * Optical richness: ~x2 scatter at fixed mass (SDSS better?)
 - * Millimeter: Y_{sze} ~30% (est.)
 - * Weak lensing: ~40% (est)
 - * X-ray: δ M/M from L_X ~50%; T_X ~15%
- Refined X-ray mass proxies show much lower scatter

Accurate & Precise Mass Estimator (Kravtsov, Vikhlinin & Nagai 2006)

- In N-body+hydro simulations, $Y_X = M_{gas}(r_{500})T_X$ is accurate mass proxy
- Scatter σ_M = 7%, including unrelaxed clusters
- Must ignore core (<0.15r₅₀₀)
- Observed M-Y relation ~15% lower than simulated (nonthermal pressure)
- In simulations, z- evolution close to self-similar

L_X as a Mass Estimator (Maughan 2007)

- Conventional L_x/M relation shows large scatter (σ_M ~40-60%)
- Excluding cluster core (r<0.15 r_{500}) yields tight L_X/Y_X rel'n, & σ_y ~12%
- Even without accurate kT measure, expect L_X
 to measure mass to 16%
 if core is excluded
 (cf O'Hara et al. 2006)

Recent Cosmological Results from Clusters

- Improved constraints on σ_8 * Fine-tuning WMAP results (Henry, Evrard et al.)
- Lastest from geometric methods
 * CXO/SZE (Bonamente, Joy et al)
 - * F_{gas} (Allen, Rapetti et al.)
- Latest on growth of structure
 - * Mantz et al. (next talk)
 - * Vikhlinin et al. (coming soon)

Results from SZE & Chandra

Bonamente, Joy et al. 2006 H₀ = 77.6±4±9 km s⁻¹ Mpc⁻¹ (ΛCDM Ω_m = 0.3)

Redshift

Fig. 4.— Angular diameter distances of the 38 clusters, using the simple r < 100 kpc-cut isothermal β model (green) and the isothermal β model (red) described in Section 4.2. The error bars are the total statistical uncertainties, obtained by adding the X-ray and SZE data modelling uncertainties (Table 4, Table 5) and the additional sources of random error described in Section 3.3 and Table 3. The systematic errors of Table 3 are not shown. Dashed lines are the best-fit angular diameter curves using the best-fit Hubble constant $H_0=77.6$ km s⁻¹ Mpc⁻¹ (green) and $H_0=73.7$ km s⁻¹ Mpc⁻¹ (red) and $\Omega_M = 0.3$, for $\Omega_{\Lambda} = 0.7$. In black are the distances obtained with the hydrostatic equilibrium model of Section 4.1 (Figure 3).

Eight Years of Chandra 25 October 2007 Read the fine print!

Results from Cluster f_{gas} Allen et al. astro-ph/0706.0033 0 @ 99.99% confidence, for + priors $\sigma_{w} = 0.07$ ($\Omega_{K} = 0$ assumed)

Figure 6. The 68.3 and 95.4 per cent (1 and 2 σ) confidence constraints in the $\Omega_{\rm m}$, Ω_{Λ} plane for the Chandra $f_{\rm gas}$ data (red contours; standard priors on $\Omega_{\rm b}h^2$ and h are used). Also shown are the independent results obtained from CMB data (blue contours) using a weak, uniform prior on h (0.2 < h < 2), and SNIa data (green contours; the results for the Davis *et al.* 2007 compilation are shown). The inner, orange contours show the constraint obtained from all three data sets combined (no external priors on $\Omega_{\rm b}h^2$ and h are used). A Λ CDM model is assumed, with the curvature included as a free parameter. $SNIa = \frac{1}{2}$

Figure 8. The 68.3 and 95.4 per cent (1 and 2σ) confidence constraints in the $\Omega_{\rm m}$, w plane obtained from the analysis of the Chandra $f_{\rm gas}$ data (red contours) using standard priors on $\Omega_{\rm b}h^2$ and h. Also shown are the independent results obtained from CMB data (blue contours) using a weak, uniform prior on h (0.2 < h < 2.0) and SNIa data (green contours; Davis *et al.* 2007). The inner, orange contours show the constraint obtained from all three data sets combined: $\Omega_{\rm m} = 0.253 \pm 0.021$ and $w = -0.98 \pm 0.07$ (68 per cent confidence limits). No external priors on $\Omega_{\rm b}h^2$ and hare used when the data sets are combined. A flat cosmology with a constant dark energy equation of state parameter w is assumed.

Eight Years of Chandra 25 October 2007

Read the fine print!

Key Questions

- How good are absolute mass estimates?
 * e. g., X-ray/weak-lensing comparison
- Are X-ray selected samples fair?
 * e. g., compare to SZE- and optical selection
- How do we tell which clusters are 'relaxed'?
- How do mass-observable relations evolve?
- How do mergers & feedback affect scatter & evolution of mass-observable relations?

More data coming soon

- SZ surveys for clusters:
 - * SPT: 4000 deg², > 10⁴ clusters, 1st light '07
 - * ACT: ~1000 deg², 1st light '07
 - * Planck: All-sky, launch 2008
 - * ALMA:
- X-ray surveys:
 - * SRG-e-ROSITA: ~half-sky, S_X >4e-14 cgs,
 >8 x 10⁴ clusters, launch 2011
 - * Others?
- Optical surveys:
 - * LST: all-sky, 1st light ~2014

Future X-ray Observations

Near-term:

- Chandra observations of ~100 higher-z clusters (~5 Ms) from, e.g., SZ survey) can:
 - * Measure evolution & scatter of mass proxies
 - * Improve cosmological constraints from growth-of structure (better masses)
- e-ROSITA will provide ~x100 more X-ray selected clusters than we have now (most @ z < 1)

Future X-ray Observations

Longer term:

- Constellation-X is essential to resolve bulk motions & turbulence in the ICM to z=1:
 - * Size (collecting area) matters!
 - * Reduce mass systematics in f_{qas} samples
 - * Improve mass-observable relations for structure growth experiments
- Future low-background, high-angular-resolution mission would reveal very first clusters at z ~2+

Conclusions

- Cluster studies have already contributed to our knowledge of cosmology & structure formation.
- As with every cosmological measurement, systematic errors dominate; progress is rapid:
 - * Chandra has vastly improved cluster mass metrics
 - * Better absolute normalization of mass-obs. rel'n is needed & coming (lensing, SZE, future observatories)
- Chandra has shown us clusters are complicated, but (so far, it seems) not too complicated.
 - * We now know mergers AGN feedback affect ICM
 - * We need to understand the physics & quantify effects on mass estimates

Eight Years of Chandra 25 October 2007

Eight Years of Chandra 25 October 2007