Outbursts from Supermassive Black Holes

Forman, Churazov, Jones, Kraft, Nulsen Bohringer, Begelman, Heinz, Owen, Eilek

Modeling the Supermassive Black Hole Driven Shocks in M87
Interaction between a SMBH and gas rich atmosphere
Shocks, Buoyant plasma bubbles, Jet, Cavities, Filaments

Old:

Messier, 1781 (March 18) => Age > 226 yr Mean stellar age ~ 10 Gyr

Popular:

3436 papers (NASA ADS) => Most popular elliptical in the observable Universe

M_{BH}~3x10⁹ M_{sun} Macchetto+,97

M87 from Chandra (500 ks; 9 obsids) Spectacular filaments and a classical shock

Enhance cool regions

Classical (text book) Shock

Density and temperature give independent and consistent measures of Mach number

M = 1.2

See Forman+07 (ApJ, 665 1057) for details

Central Piston

X-rays Thermal plasma

Radio Cocoon (6 cm) Relativistic plasma From SMBH

What kind of shock/outburst?

Fast energy release

Slow energy release

 $M \gg 1$

Instantaneous energy release (Superman) (Sedov-Taylor)

Piston - gradual energy release (Winnie)

Hot, low density gas

Cool, dense shell

- Absence of hot shocked region => gradual energy release
- •Run grid of models to constrain:
 - Outburst duration
 - Outburst energy

Outburst Energy vs. Duration

Temperature Jump $T_2/T_1=1.21\pm0.05$ Density jump $\rho_2/\rho_1=1.33\pm0.02$

Cocoon radius $R_{piston} = 3\pm0.25 \text{ kpc}$

Duration = 1-3 Myr **Energy** = 4-6 x 10⁵⁷ ergs **Age** = 12 Myr

Outburst Balances Radiation

Solution to "cooling flow problem" L_{rad} (10⁴³ erg/s) $\approx L_{outburst}$ (E₀/age=10⁴³erg/s)

Best Model: $E_0 = 5x10^{57}$ ergs; Age~12 Myr Δt ~2Myr

Three Generations of Buoyant Bubbles

Broadly consistent with 3 generations of buoyantly rising bubbles
Youngest active now!

Owen+00 Churazov+01

Effects of Buoyant Bubbles on ICM

Buoyant bubbles generate cool, X-ray arms Uplift cool gas Owen+00 Churazov+01 Belsole+01 Molendi 02 Forman+05,+07

Shocks and Bubbles in M87

- Detect shock (X-ray) and driving piston (radio)
 - Classical (textbook) shock M=1.2 (temperature and density independently)
 - Outburst constrained by:
 - Size of driving piston (radius of cocoon)
 - Measured T_2/T_1 , ρ_2/ρ_1 (ρ_2/ρ_1)
- Outburst Model
 - Age ~ 12 Myr
 - Energy $\sim 5 \times 10^{57}$ erg
 - Bubble 50%
 - Shocked gas 25% (25% carried away by weak wave)
 - Outburst duration ~ 1-3 Myr
- Outburst energy "balances" cooling (few 10⁴³ erg/sec)
- AGN outbursts key to feedback in galaxy evolution, growth of SMBH
 - e.g., Ciotti & Ostriker 07, Sazonov+05, Croton+06

Thank you This slide intentionally left blank