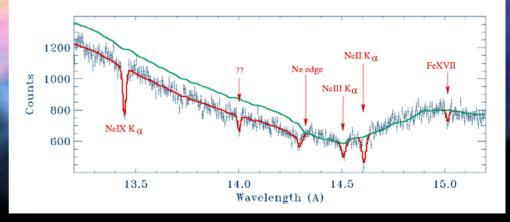


Warm Absorbers in Galactic X-Ray Binaries

Norbert S. Schulz

Absorption in X-ray sources

Correstantial and a second state of the second


Absorption in X-ray sources

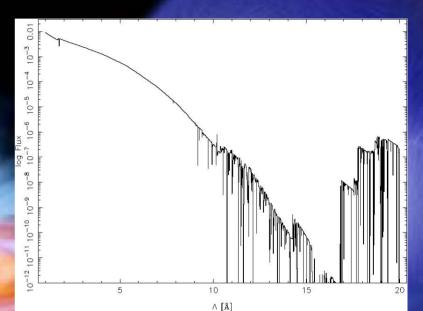
Absorption in cool matter/plasmas:

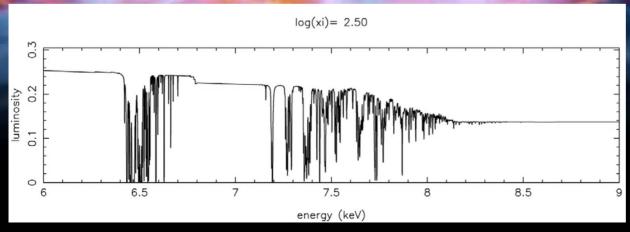
Photo-electric continuum absorption Ne-K edge 1000 Fe L edges O-K edge 100 counts/bin 10 O-K edge (cm²) 10^{-1} moto 10-18 0 10-1 10^{-20} -3p 1s-2p 22.5 23.0 22.0 23.5 24.0 Wavelenath 14 16 20 22 26 Wavelength (Å)

Collisional Ionization Equilibrium kT > MK H-, He-like resonance absorption (and Li-, B-like for Fe)

Absorption in X-ray sources

Absorption in photo-ionized (warm) plasmas:

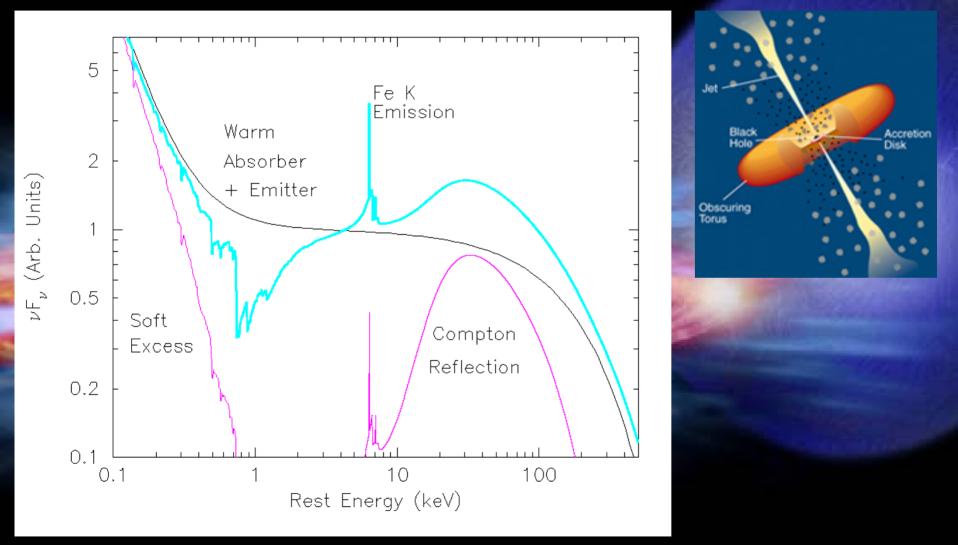



Warm absorber:

electron temperature of illuminated matter << 10⁶ K in contrast to a collisionally ionized gas gas with a similar level of ionization (Halpern 1984)

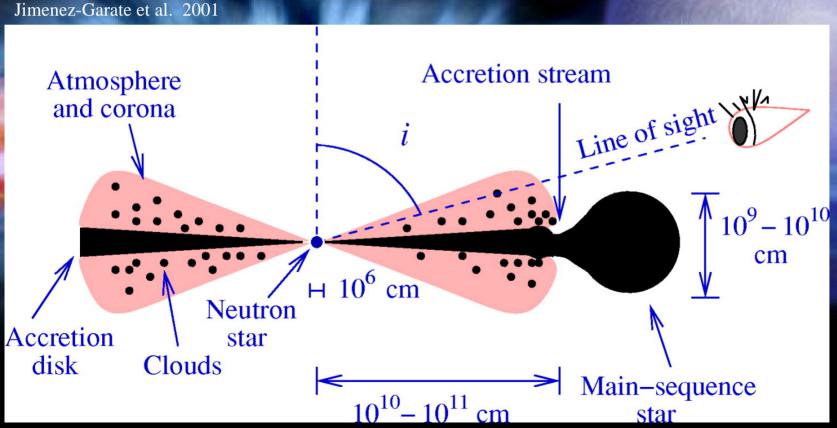
Ionization parameter $\xi = L_x / n_e d^2$

XSTAR simulations, version 2.1kn7 (March 2007):



Warm absorbers in Seyfert I galaxies:

Soft absorber in warm plasma:

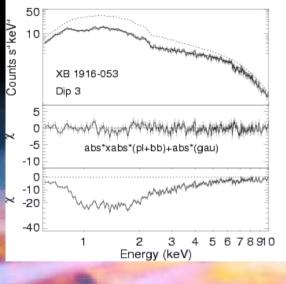


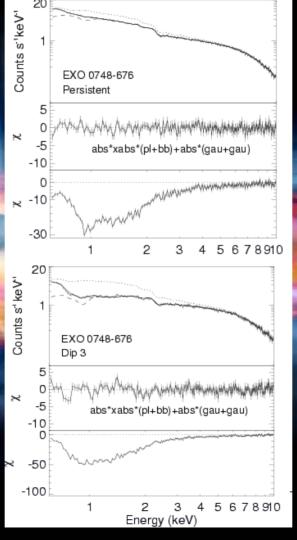
Accretion disk atmospheres and coronae

- X-ray line emission from optically thick disk surface
- plain optically thin surface layers: disk atmosphere and/or corona not enough column to produce observed columns
- X-ray line emission from optically likely need high density material dispersed in the disk atmosphere and/or corona
- clumps/clouds stationary, randomly distributed

Summary Table:

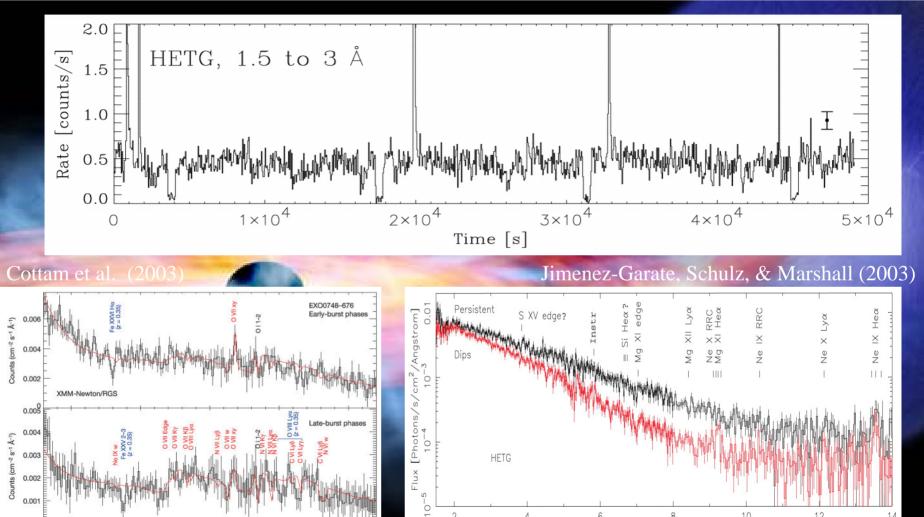
Name	RA	DEC	Binary	Compact	$\log L_x$	ç	$\log N_{ion}$	refs
1 111111		550	Type	Object	[erg/s]	[erg/s cm]	$[cm^{-2}]$	a to and
			19190	Gujece	[8/3]	[[]	
EXO 0748-676	$07 \ 48 \ 33.3$	$-67 \ 45 \ 00.0$	LMXB	NS	36.6	2.5 - 3.0	22.6 - 23.7	[1, 2]
MXB 1916-05	$19\ 18\ 47.7$	$-05\ 14\ 11.2$	LMXB	NS	36.6	2.5 - 3.0	22.6 - 23.7	[1]
4U 1323-62	$13\ 26\ 36.1$	$-62 \ 08 \ 10.0$	LMXB	NS	36.7	3.1 - 3.9	22.6 - 23.6	[6]
4U 1254-690	$12 \ 57 \ 37.2$	$-69\ 17\ 21.0$	LMXB	NS	37.0	2.9 - 4.3	22.9 - 23.7	[1]
4U 1746-37	$17 \ 50 \ 12.7$	$-37 \ 03 \ 08.0$	LMXB	NS	37.0	> 3.5	$>\!22.5$	Ì1
GX 13+1	$18 \ 14 \ 31.5$	-17 09 26.7	LMXB	NS	37.4	> 3.5	$>\!\!22.5$	$\begin{bmatrix} 1 \\ 5 \end{bmatrix}$
MXB 1659-298	$17 \ 02 \ 06.5$	-29 56 44.1	LMXB	NS	37.5	2.4 - 3.8	23.1 - 23.7	[1, 4]
4U 1624-490	$16\ 28\ 02.8$	$-49 \ 11 \ 54.6$	LMXB	NS	37.7	2.9 - 3.6	23.1 - 23.8	[1, 3]
Cir X-1	$15 \ 20 \ 40.9$	$-57\ 10\ 01.0$	LMXB	NS	37.2 - 38.2	2.2 - > 5	22.2 - 23.8	[7, 8]
GX 339-4	$17 \ 02 \ 49.5$	-48 47 23.0	LMXB	BH	37.1	4.0	<< 22	[9]
XTE J1650-500	06 50 01.0	-49 57 45.0	LMXB	BH	37.5	4.3	n/a	[13]
GRO J1655-40	16 54 00.1	-39 50 44.9	LMXB	BH	37.5	4.2 - 4.7	> 22.0	[9]
XTE J1550-564	00 00 00.0	00 00 00.0	LMXB	BH	38.0	> 4	n/a	[12]
H 1743-322	$17 \ 45 \ 02.0$	$-32 \ 13 \ 40.0$	LMXB	BH	38.3	5.5 - 5.7	21.8 - 22.3	[10]
GRS 1915+105	$19\ 15\ 11.6$	10 56 44.0	LMXB	BH	38.8	> 4.2	22.3 - 23.1	[11]
4U 1755-33	17 58 40.0	-33 48 27.0	LMXB	BH				[14]
Cyg X-1	$19\ 58\ 21.6$	$35 \ 12 \ 06.0$	HMXB	BH	37.0	1.8 - 2.8	21.2 - 22.9	[15]
X 1908+875	$19\ 10\ 46.0$	$07 \ 36 \ 07.0$	HMXB	NS				54 af
Vela X-1	$09 \ 23 \ 06.9$	$-40 \ 33 \ 17.0$	HMXB	NS				
Cyg X-3	$20 \ 32 \ 25.8$	$40 \ 57 \ 28.0$	HMXB	BH				


 Diaz-Trigo et al. 2006 [2] Jimenez-Garate et al. 2003 [3] Xiang et al. 2007 [4] Sidoli et al. 2001 [5] Ueda et al. 2004 [6] Boirin et al. 2005 [7] Schulz & Brandt 2002 [8] Schulz et al. 2006 [9] Miller et al. 2006a [10] Miller et al. 2006b [11] Lee et al. 2003 [12] Miller et al. 2003 [13] Miller et al. 2002 [14] Angelini & White 2003 [15] Miller et al. 2005



Low luminosity accreting neutron stars - atoll sources

Diaz-Trigo et al. 2006: XMM-Newton Epic-pn:



Wavelength (Å)

Warm Absorbers in Compact Binaries: EXO 0748+676

Wavelength [Angstrom]

The low flux state of Cir X-1

low X-ray fluxes (<100 mCrab) Heinz etal, 2007, ApJ, 544, L123, Schulz et al.2008, ApJ, Jan. 10 low ionization parameter: log $\xi = 2 - 3$ no blueshifts

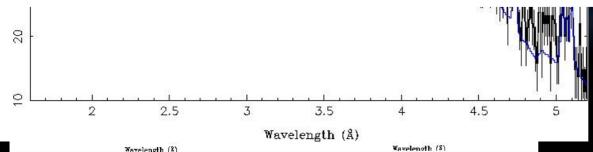

cold, lukewarm, warm absorber present

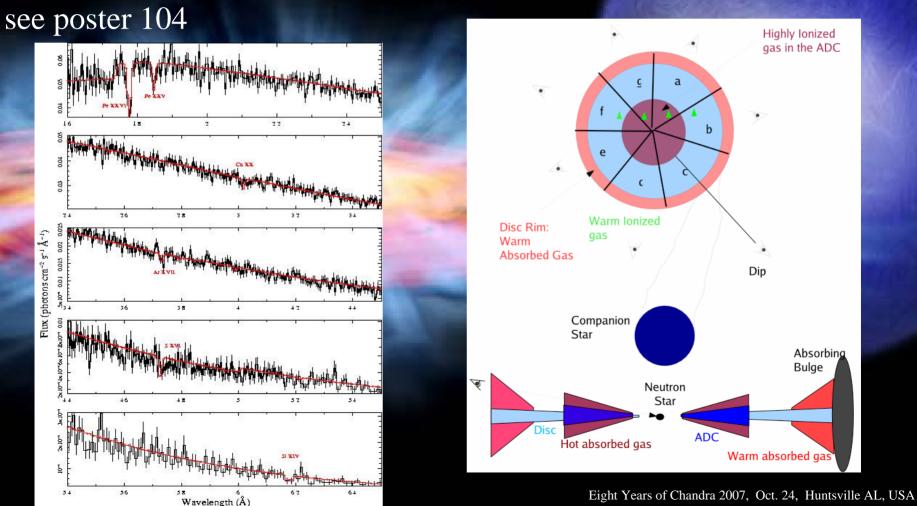
TABLE 3. THE FIT RESULTS USING THE PHOTOIONIZATION (PH) AND WARMABSORBER (WA) MODEL IN XSTAR

Obsid	Model	$\log N_H^{cold}$	$\log{\cal N}_{H}^{warm}$	ξ	Г	Z	\mathbf{f}_x^a	L^b_x
		[cm-2]	[cm-2]	$[{\rm ergs}~{\rm cm}~{\rm s}^{-1}]$			$[10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1}]$	$[10^{36} \text{ erg s}^{-1}]_{\downarrow}$
								- 18
6148	$_{\rm PH}$	$22.9^{+0.0}_{-0.0}$	_	3.0	$1.58^{+0.00}_{-0.00}$	0.001	1.219	0.496 $\stackrel{\infty}{\scriptscriptstyle o}$
5478	WA (low)	$22.3_{-0.1}^{+0.1}$	$23.9^{+0.1}_{-0.0}$	$1.6\substack{+0.4\\-0.2}$	$0.38^{+0.29}_{-0.19}$	$-0.0077^{+0.0028}_{-0.0047}$	1.51	0.614
5478	WA (high)	$22.3_{-0.7}^{+2.4}$	$22.8^{+0.1}_{-0.1}$	$2.7^{+0.1}_{-0.2}$	$2.62\substack{+0.12 \\ -0.12}$	$-0.0019\substack{+0.0019\\-0.0021}$	8.31	3.38

a) between 2 – 10 keV

b) for a distance of 6 kpc

Eight Years of Chandra 2007, Oct. 24, Huntsville AL, USA



The Big Dipper: 4U 1624-42

-X-ray absorber seen in XMM Epic Spectra (Parmar et al. 2002): hot absorber Fe XXV, XXVI, Ni XXVII warm absorber (< Fe XXV), 6.58 keV

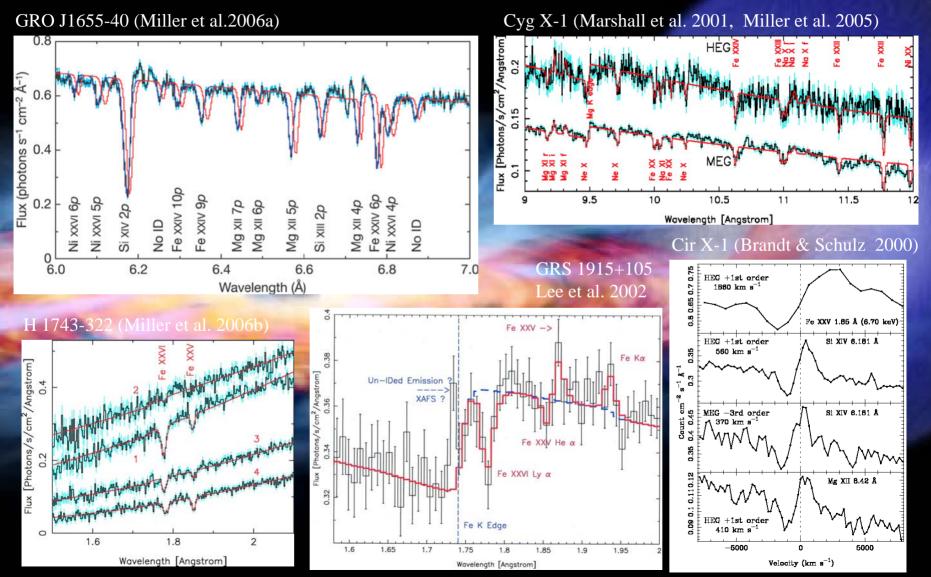
-Xiang et al 2008: XSTAR fit to HETG spectrum: hot $(3x10^6 \text{ K})$, warm (10^6 K) , cool (< 10^5 K)

Warm Absorbers in Microquasars:

Accretion disk atmospheres/coronae gone wild

Cir X-1	$15 \ 20 \ 40.9$	$-57\ 10\ 01.0$	LMXB	\mathbf{NS}	37.2 - 38.2	2.2 - > 5	22.2 - 23.8	[7, 8]	
GX 339-4	$17 \ 02 \ 49.5$	-48 47 23.0	LMXB	BH	37.1	4.0	<< 22	[9]	
XTE J1650-500	$06 \ 50 \ 01.0$	-49 57 45.0	LMXB	BH	37.5	4.3	n/a	[13]	
GRO J1655-40	$16\ 54\ 00.1$	-39 50 44.9	LMXB	BH	37.5	4.2 - 4.7	> 22.0	[9]	
XTE J1550-564	$00 \ 00 \ 00.0$	$00 \ 00 \ 00.0$	LMXB	BH	38.0	> 4	n/a	[12]	
H 1743-322	$17 \ 45 \ 02.0$	$-32 \ 13 \ 40.0$	LMXB	BH	38.3	5.5 - 5.7	21.8 - 22.3	[10]	
GRS 1915 + 105	$19\ 15\ 11.6$	10 56 44.0	LMXB	BH	38.8	> 4.2	22.3 - 23.1	[11]	
4U 1755-33	17 58 40.0	-33 48 27.0	LMXB	BH				[14]	
Cvg X-1	$19\ 58\ 21.6$	35 12 06.0	HMXB	BH	37.0	1.8 - 2.8	21.2 - 22.9	[15]	

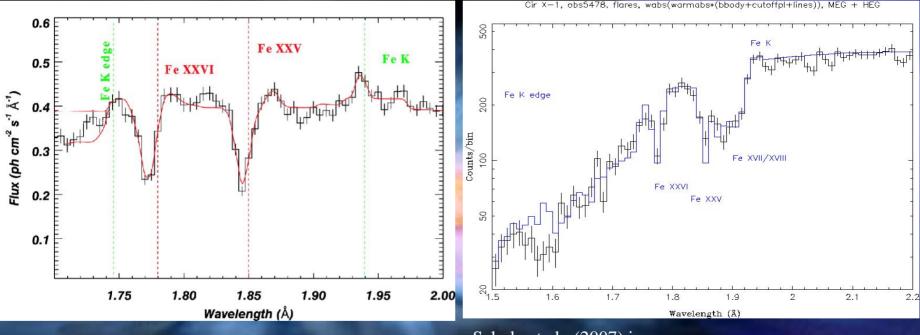
Blueshifts from equatorial flows


No shift or unconfirmed shifts

Redshifts from focussed winds

Microquasars

Eight Years of Chandra 2007, Oct. 24, Huntsville AL, USA


Microquasars: the special case of Cir X-1

The X-ray binary with two faces:

at high X-ray fluxes (>1 Crab)

at low X-ray fluxes (<100 mCrab)

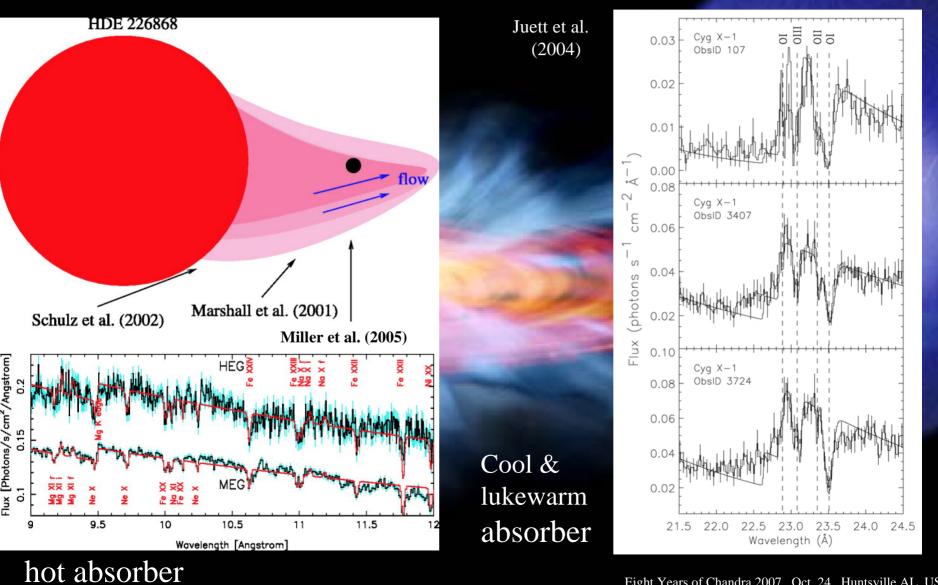
Schulz & Brandt (2002)

high ionization parameter: $\log \xi > 4$ blueshifts: $v_{outflow} = 400 - 2000$ km/s cold and hot absorber present

microquasar

Schulz et al. (2007) in prep.

low ionization parameter: $\log \xi = 2 - 3$ no blueshifts cold, lukewarm, warm absorber present


• atol dipper

Eight Years of Chandra 2007, Oct. 24, Huntsville AL, USA

Microquasars: the case of Cyg X-1

Summary:

-intrinsic absorption of various temperature levels now observed in more than a dozen XRB: cold (<10³ K), warm (<10⁶ K), hot (>10⁶ K)

-warm and hot absorbers seen in atol dippers and some microquasars
- warm absorber competes with ADC at high inclination

-absorber strength increases with luminosity intrinsically as well as between atol dippers and microquasars

-so far no clear trend with respect to column densities between absorbers in accreting NS and BHs

-warm aborber regions in X-ray binaries are likely different wrpt to Seyfert Is: accretion disk atmospheres vs. halo region