#### Shock Physics in Supernova Remnants: an Observational Perspective

Cara E. Rakowski Naval Research Laboratory

#### "collisionless shocks"



8 Years of Chandra Symposium



October 2007

8 Years of Chandra Symposium

Ideally measure:  $V_{Shock}, M_A, T_e, T_p, T_{He}, T_C, T_O, T_N, \dots$ as well as cosmic-ray electrons and ions Measuring "Temperature" UV, Optical, X-rays...

Thermal broadening of line width

- Temperature dependence of emission line ratios
  - Best: single element, single ion
  - Ion fractions (<u>solar wind</u>)

Different elements, known abundances

Thermal bremsstrahlung continuum





Measuring "Temperature" UV, Optical, X-rays...

- Thermal broadening of line width
- Temperature dependence of emission line ratios
  - Best: single element, single ion
  - Ion fractions (<u>solar wind</u>)
  - Different elements, known abundances
- Thermal bremsstrahlung continuum



Rakowski et al 2003 ApJ 590, 846





October 2007

8 Years of Chandra Symposium



#### Rakowski 2005 Adv. in Space Res. 35, 1017

8 Years of Chandra Symposium

### **Solar Wind Shocks**



#### Recap:

SNR shocks are collisionless

 d<sub>shock</sub> << d<sub>mean free path</sub>

 UV, optical and X-ray spectral observations of line widths, ratios and continuum emission
 (T<sub>e</sub> / T<sub>p</sub>)<sub>0</sub> decreases with increasing v<sub>s</sub>

## initial electron-proton heating for shocks into partially neutral gas

Ghavamian, Laming & Rakowski, 2007 ApJ 654, L69

October 2007

8 Years of Chandra Symposium



Ghavamian, Laming & Rakowski, 2007 ApJ 654, L69

8 Years of Chandra Symposium



Ghavamian, Laming & Rakowski, 2007 ApJ 654, L69

8 Years of Chandra Symposium

#### cosmic ray lower hybrid waves

B $v_{group \perp} \cong$  $v_{phase}$  $\frac{k_{||}^2}{m_e/m_p} \approx \frac{k_{\perp}^2}{m_p}$  $v_{s}$ 

upstream rest frame

 $\omega^2 = \Omega_e \ \Omega_p$   $(\Omega_{e,p} \equiv eB/m_{e,p}c)$ 

 $L \sim \kappa / v_s$  $t = \kappa / v_s^2$  $\frac{1}{2} m_e v_e^2 = \frac{1}{2} m_e D_{||} t$ 

 $\frac{D_{||} \propto v_s^2 \quad (E^2)}{\frac{1}{2} m_e v_e^2 \propto \Omega_e \kappa}$ 

 $\kappa \propto 1/B$ heating independent of both  $v_s$  and B!

#### cosmic ray lower hybrid waves

reasonable values of *κ*need diffusive superthermals
easy to excite
age of the remnant to grow

#### **Bottom Line**

Cosmic-rays are an integral part of collisionless shocks.

- heating electrons
- generating magnetic field

# Work in Progress:

Calculated kinetic (resonant) and reactive (nonresonant) growth rates for the instability

 γ<sub>kinetic</sub> ∝ n<sub>CR</sub> /n<sub>ion</sub>
 need seed particles to be diffusive (κ only weakly momentum dependent)
 no reactive instability yet found for isotropic CR distribution

# Next up: Shocks into fully ionized gas Revisit DEM L71



October 2007

# DEM L71: new Hα spectra





October 2007

8 Years of Chandra Symposium

### Conclusions

Lower hybrid waves of CR precursor can explain constant level of electron heating seen in SNR shocks into partially neutral gas.

More work is needed to extend to other astrophysical situations in fully ionized gas.

### **Collaborators:**

J. Martin Laming, NRL
Parviz Ghavamian, Johns Hopkins
John P. Hughes, Rutgers University
Anne Decourchelle, CEA Saclay

# the end

#### New Results

Calculated kinetic (resonant) and reactive (nonresonant) growth rates for the instability

γ<sub>kinetic</sub> ∝ n<sub>CR</sub> /n<sub>ion</sub>
 γ<sub>reactive</sub> ∝ (n<sub>CR</sub> /n<sub>ion</sub>)<sup>1/3</sup>
 assuming n<sub>CR</sub> /n<sub>ion</sub> ~10<sup>-3</sup> reactive growth rate needed to explain electron heating



#### Rakowski 2005 Adv. in Space Res. 35, 1017

8 Years of Chandra Symposium

# maybe include:

October 2007

# probably skip:

October 2007



Chandra X-ray Center Cara E. Rakowski

8 Years of Chandra Symposium

# Tycho's SNR

Warren et al. 2005 ApJ 634, 376

# cosmic ray acceleration?

#### 1E 0102-72

Hughes, Rakowski, & Decourchelle 2000 ApJ 543, L61

8 Years of Chandra Symposium

#### Recap:

Cosmic Ray Acceleration inherent to collisionless shocks
 Indirect evidence for CRs

 enhanced magnetic field
 shock structure
 reduced energy in thermal population

#### Influence electron heating? $T_e/T_p$ ?