The Low Metallicity ISM of X-ray Faint Elliptical Galaxies

Jimmy Irwin University of Michigan

Eight Years of Science with Chandra - October 23, 2007

Metallicity of the Hot Gas: History

Initial studies with ASCA led to the "metallicity problem" (Arimoto et al. 1997) : hot gas: $\sim 20\%$ solar, stars: \geq solar

- spectral codes (Raymond-Smith vs. MEKAL vs. APEC)
- calibration
- meteoric vs. photspheric abundances
- treatment of LMXB component
- temperature gradients ("Fe bias" e.g., Buote 2000)

Chandra/XMM-Newton studies of high L_X/L_{opt} galaxies find ~solar abundances (e.g., Xu et al. 2002; Matsushita et al. 2003; Kim & Fabbiano 2004; Humphrey & Buote 2006).

Best spectra show non-solar abundance ratios.

Metallicity of Gas-Rich Ellipticals

L_X vs. L_{opt} Relation

O'Sullivan, Forbes, & Ponman 2001

X-ray bright galaxies - gas dominated

factor of ~50-100 dispersion in relation

(e.g, Trinchieri & Fabbiano 1985; Brown & Bregman 1998; Irwin & Sarazin 1998; Beuing et al. 1999; O'Sullivan et al. 2001)

X-ray faint galaxies - LMXB dominated

$$L_X \propto L_{opt}$$
 1.7-3.0

Metallicity of Gas in Low L_X/L_{OPT} Galaxies

For the few X-ray faint ellipticals for which the metallicity is reported in the literature, very sub-solar values were found:

NGC4697: 7% solar (Sarazin, Irwin, & Bregman 2001) NGC1291: 13% solar (Irwin, Sarazin, & Bregman 2002) NGC4494, NGC3585, NGC5322 : <10% solar (O'Sullivan & Ponman 2004)

NGC1553 : ~15% (Humphrey & Buote 2006)

Potential Problems: poor statistics stronger relative LMXB contribution elements fixed at solar ratios

Low Metallicity Gas in NGC4697

174 ksec Chandra

40 ksec XMM-Newton

 $\chi_v^2 = 0.95/616 \text{ d.o.f}$

 $kT = 0.36 \pm 0.05 \text{ keV}, O = 0.13 \pm 0.09 \text{ solar}, Fe = 0.20 \pm 0.11 \text{ solar}$

NGC4697 vs. X-ray Bright Galaxies

Source of Low Metallicity Gas

How are both L_X/L_{opt} and low metallicity achieved?

One solution: ongoing accretion of pristine gas surrounding galaxies dilutes to subsolar metallicities observational evidence: extended HI structures observed around some ellipticals and S0s (Morganti et al. 2006; Oosterloo et al. 2007)

NGC4697: ~10⁸ M_{\odot} \rightarrow ~8 x 10⁷ M_{\odot} of accreted pristine gas

Larger, X-ray bright ellipticals: $\sim 10^{10} M_{\odot} \rightarrow \text{dilution ineffective}$

HI Gas Around Northern Ellipticals/S0s

Northern hemisphere ellipticals with 10⁸ - 10¹⁰ M_☉ large-scale HI halos (Morganti et al. 2006)

optical images/HI contours

HI Gas Around Southern Ellipticals/S0s

Southern hemisphere ellipticals with 10⁸ - 10¹⁰ M_☉ large-scale HI halos (Oosterloo et al. 2007)

Source of Low Metallicity Gas

How are both L_X/L_{opt} and low metallicity achieved?

One solution: ongoing accretion of pristine gas surrounding galaxies dilutes to subsolar metallicities observational evidence: extended HI structures observed around some ellipticals and S0s (Morganti et al. 2006; Oosterloo et al. 2007)

NGC4697: ~10⁸ M_{\odot} \rightarrow ~8 x 10⁷ M_{\odot} of accreted pristine gas

Larger, X-ray bright ellipticals: $\sim 10^{10} M_{\odot} \rightarrow \text{dilution ineffective}$

Conclusions

Confirmed that NGC4697 has low metallicities, on an element-by-element basis.

- all X-ray faint galaxies?

Dilution of metal-rich ISM with pristine gas from HI structures surrounding isolated galaxies?

- predicts metal-rich ISM in X-ray faint galaxies in clusters
- predicts the same abundance ratios as in X-ray bright galaxies

can be addressed with deep XMM-Newton observations coupled with existing deep Chandra observations

Bulge of M31

Old, metal-rich stellar population kT ~ 0.3 keV (Shirey et al. 2001; Takahashi et al. 2004) L_X/L_{opt} comparable to X-ray faint ellipticals

38 ksec Chandra

 $\chi_v^2 = 1.11/235$ d.o.f

Bulge of M31

 $kT = 0.31 \pm 0.02 \text{ keV}$ $O = 0.09 \pm 0.05 \text{ solar}$ $Ne = 0.29 \pm 0.09 \text{ solar}$ $Mg = 0.15 \pm 0.07 \text{ solar}$ $Fe = 0.23 \pm 0.06 \text{ solar}$

<u>Total 0.5 - 2.0 keV flux</u> Source: 85% Background: 15%

<u>Source 0.5 - 2.0 keV flux</u> Gas: 70% Stellar: 30%

M32 - Stellar X-ray Sources

M32 does not contain any X-ray-emitting ISM

Only X-ray emission is from stellar sources: accreting white dwarfs, active stellar coronae, etc. (Revnivtsev et al. 2007).

Two component APEC+power law fits data well.

M31 - Stellar X-ray Sources

Use M32 spectrum, scale up to 2-8 keV flux from M31 spectrum.

0.5-2 keV flux dominated by an additional component: the ISM

Stellar Source for Soft Component?

<u>NGC4697</u>

 $L_{X,gas}(0.5-2 \text{ keV}): 2.1 \text{ x } 10^{39} \text{ ergs s}^{-1}$

 $L_K: 9.1 \ge 10^{10} L_{\odot}$ (David et al. 2006)

 $L_{X,gas}(0.5-2 \text{ keV})/L_{K}$: 2.3 x 10²⁸ ergs s⁻¹ L_{\odot}^{-1} (similar for M31)

M32 (Revnivtsev et al. 2007)

 $L_{X,stellar}(0.5-2 \text{ keV})/L_K$: **4.1 x 10²⁷ ergs s**⁻¹ L_{\odot}^{-1}

Gas component of NGC4697 **5.6x** larger than expected stellar contribution.

X-ray Bright vs. X-ray Faint

NGC4636 ($M_V = -21.3$)

NGC4494 ($M_V = -21.5$)

NGC4494: $L_{X,total}$ (ROSAT) - 3 x 10³⁹ ergs s⁻¹ $L_{X,gas}$ (*Chandra*) - 4 x 10³⁸ ergs s⁻¹