CHANDRA, SPITZER & VLA OBSERVATIONS OF YOUNG CLUSTERS

SCOTT WOLK - CXC/CFA WITH HELP FROM... R. OSTEN (UMD), T. BOURKE, R. GUTERMUTH, B.SPITZBART (CFA), S.T. MEGEATH (TOLEDO), E. WINSTON (DUBLIN) AND MANY MORE.

3/14/08

SCOTT WOLK - CFA

WHY BOTHER LOOKING AT YOUNG STARS IN X-RAYS

YOUNG STARS ARE X-RAY BRIGHT

- HMS- HIGH ENERGY WIND SHOCKS?
- LMS- DESPITE PEDESTRIAN 5000K, TEMPERATURES THEY HAVE HOT CORONA.
 - INSIGHT INTO THE INTERIOR WORKINGS OF LMS.
- TO IDENTIFY YOUNG STARS.
 - AFTER STARS LOSE THEIR DISKS X-RAY SURVEYS ARE THE ONLY WAY TO FIND YOUNG STELLAR OBJECTS
 - THIS HAS ALLOWED US TO UNDERSTAND THE HISTORY OF STAR FORMATION IN THE GALAXY.
- DIRECT OBSERVATION OF MATERIAL ACCRETING ONTO VERY YOUNG STARS.
- X-RAYS ARE PROBABLY RESPONSIBLE
 FOR RAPID HEATING OF
 PROTOPLANETARY DISKS.
 3/14/08 Scott Wol

SCOTT WOLK-CFA

COUP STUDY OF THE ONC

VOLUME 160

- 850 ks
- 13 PAPERS IN THE APJSUPP
- 465 REFEREED CITATIONS
- 6 REFEREED PAPERS SINCE
- XEST 11 PAPER A&A SPECIAL EDITION ON TAURUS SFR.
- SO AREN'T WE DONE?

THE ASTROPHYSICAL JOURNAL

NUMBER 2

З

SUPPLEMENT SERIES

2005 OCTOBER

THE CHANDRA ORION ULTRADEEP PROJECT

CHANDRA ORION ULTRADEEP PROJECT: OBSERVATIONS AND SOURCE LISTS © K. F. German, E. Flaccomio, P. S. Broos, N. Grosso, M. Taujimoto, L. Townsley, G. P. Garmire, J. Kastner, J. Li, F. R. Harnder S. Wolk, S. S. Murroy, C. J. Lada, A. A. Munech, M. J. McCanaghrvan, G. Meeus, F. Damiani, G. Micela, S. Sciortino, J. Bally, L. A. Hillenbrand, W. Herbst, T. Preibisch, & E. D. Feigelson	19 Jr.,
MEMBERSHIP OF THE ORION NEBULA POPULATION FROM THE CHANDRA ORION ULTRADEEP PROJECT © Konstantin V. Getman, Eric D. Feigelson, Nicolas Grosso, Mark J. McCaughrean, Giusi Micela, Patrick Broos, Gordon Garmire, & Leisa Townsley	353
GLOBAL X-RAY PROPERTIES OF THE ORION NEBULA REGION Eric D. Feigelson, Konstantin Getman, Leisa Townsley, Gordon Garmire, Thomas Preibisch, Nicolas Grosso, Thierry Montmerle, Augustus Muench, & Mark McCauginean	379
THE EVOLUTION OF X-RAY EMISSION IN YOUNG STARS Thomas Preibisch & Eric D. Feigelson	390
THE ORIGIN OF T TAURI X-RAY EMISSION: NEW INSIGHTS FROM THE CHANDRA ORION ULTRADEEP PROJECT Thomas Preibisch, Yong-Cheol Kim, Fabio Favata, Eric D. Feigelson, Ettore Flaccomio, Konstantin Gennan, Giusi Micela, Salvatore Sciortino, Keivan Stassun, Beate Stelzer, & Hans Zinnecker	401
STELLAR ACTIVITY ON THE YOUNG SUNS OF ORION: COUP OBSERVATIONS OF K5-7 PRE – MAIN-SEQUENCE STARS S. J. Wolk, F. R. Harnden Jr., E. Flaccomio, G. Micela, F. Favata, H. Shang, & E. D. Feigelson	423
ROTATIONAL MODULATION OF X-RAY EMISSION IN ORION NEBULA YOUNG STARS E. Flaccomio, G. Micela, S. Sciortino, E. D. Feigelson, W. Herbst, F. Favata, F. R. Harnden Jr., & S. D. Vrtilek	450
BRIGHT X-RAY FLARES IN ORION YOUNG STARS FROM COUP: EVIDENCE FOR STAR-DISK MAGNETIC FIELDS? F. Favata, E. Flaccomio, F. Reale, G. Micela, S. Sciortino, H. Shang, K. G. Stassun, & E. D. Feigelson	469
IRON FLUORESCENT LINE EMISSION FROM YOUNG STELLAR OBJECTS IN THE ORION NEBULA M. Tsujimoto, E. D. Feigelson, N. Grosso, G. Micela, Y. Tsuboi, F. Favata, H. Shang, & J. H. Kastner	503
X-RAY EMISSION FROM ORION NEBULA CLUSTER STARS WITH CIRCUMSTELLAR DISKS AND JETS Joel H. Kastner, Geoffrey, Franz, Nicolas Grosso, John Bally, Mark J. McCaughrean, Konstantin Getman, Eric D. Feigelson, & Norbert S. Schulz	511

(Continued on inside page)

SCOTT WOLK -CFA

THE PROGRAM: MULTIWAVELENGTH STUDIES OF NEARBY REGIONS OF STAR FORMATION

PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star
SKETCH			₩ T	\mathbf{A}	• () o
Age (years)	104	10 ⁵	10 ⁶ - 10 ⁷ a	10 ⁶ - 10 ⁷	> 10 ⁷
mm/Infrared Class	Class 0	Class I	Class II N	Class III	(Class III)
Disk	Yes	Thick	S Thick	Thin or Non-existent	Possible Planetary System
X-RAY	?	Yes	Strong	Strong	Weak
THERMAL RADIO	Yes	Yes	Yes O	No	No
NON-THERMAL RADIO	No	Yes	_{No ?} N	Yes	Yes

FEIGELSON & MONTMERLE 1999

- GOALS
 - CLUSTER CENSUS
 - TRANSITION DISK TIMESCALES
 - EFFECT OF X-RAYS ON PLANET
 FORMING DISKS
 - ESPECIALLY
 FLARES

3/14/08

SCOTT WOLK - CFA

LK Ha 101

A BE STAR ASSOCIATED WITH ~ 65 PMS STARS FROM 2MASS AND OTHER IR SURVEYS.

About 2600 sources detected in at least 1 IRAC band
 About 213 X-ray sources in the combined 2x40ks.
 About 24 VLA sources (at either 3.6 cm or 6 cm)

SCOTT WOLK-CFA

$L \kappa H \alpha 101 C L U S T E R$

SPITZER DATA

IR COLORS OF X-RAY SOURCES

3/14/08

SCOTT WOLK-CFA

SCOTT WOLK -CFA

3/14/08

STELLAR CONTENT OF LKHa 101

Class	0/1	Ш	Trans.	Ш	Other PMS?	Bkgd
X-Ray sources	5	41	5	65	26	~65
Spitzer Sources	16	94	9	(147)	(60)	~3000

266-326 stars

X-RAY RADIO RELATION?

- 8 COINCIDENT OBJECTS BETWEEN CHANDRA/SPITZER AND VLA
- MOST OBJECTS LIE OUTSIDE THE GÜDEL-BENZ RELATION.
- NO NOTICEABLE X-RAY RADIO CORRELATION
- SIMILAR RESULTS FOUND IN ρ OPH (GANGÉ ET AL. 2004) AND THE CORONET (FORBRICH ET AL. 2007)

3/14/08

SCOTT WOLK - CFA

RADIO/X-RAY VARIABILITY

Radio

3/14/08

SCOTT WOLK -CFA

RADIO VARIABILITY

3/14/08

- AS RADIO FLUX DECREASES, THE SPECTRAL INDEX α INCRESES.
- THIS IS THE OPPOSITE OF WHAT IS SEEN IN THE SUN.
- RADIO AND X-RAY VARIABILITY SEEM DECOUPLED
 - PERHAPS THIS IS JUST SMALL NUMBERS.
 - BUT HAS BEEN SEEN IN OTHER REGIONS
- BOTH RADIO FLARES AND X-RAY RADIO COUPLING ON YOUNG STARS SEEM VERY
 NON-SOLAR FROM THE HIGH ENERGY PERSPECTIVE.

DISTANCE TO LKH α 101

A BIT OF FUN BATE ET AL. (2002, 2005)

SCOTT WOLK -CFA

IN TWO 40 KS INTEGRATIONS

- WE COMBINE THE SPITZER AND CHANDRA DATA TO ESTIMATE THE STELLAR CONTENT.
 - ► THE X-RAY DATA INDICATE A DISTANCE OF ~600PC.
 - USING TWO INDEPENDENT METHODS WE FIND A TOTAL CLUSTER SIZE OF ABOUT 300 STARS.
 - ➤ THERE APPEAR TO BE 9 TRANSITION DISKS 5 SEEN IN X-RAYS.
- ABOUT 10 SPITZER/CHANDRA SOURCES ARE DETECTED BY THE VLA. MOST ARE RADIO VARIABLE ON BOTH LONG AND SHORT TIME SCALES.
- THE RADIO SIGNATURE OF THE FLARES IS VERY NON-SOLAR.
- WE MAY BE SEEING RESIDUAL MOLECULAR CLOUD STRUCTURE. FUTURE HST/JWST OBSERVATIONS CAN DISTINGUISH BETWEEN COMPETING MODELS.

