

R. Tüllmann¹, T. J. Gaetz¹, P. P. Plucinsky¹, P. Ghavamian², D. Breitschwerdt³, M. Avillez⁴, W. P. Blair², K. S. Long⁵, T. G. Pannuti⁶, P. Frank Winkler⁷

¹Center for Astrophysics, Harvard University; ² Dep. of Physics & Astronomy, Johns Hopkins University; ³ Institut für Astronomie, Universität Wien, Austria; ⁴ Dept. of Mathematics, University of Évora, Portugal; ⁵ Space Telescope Science Insitute, Baltimore; ⁶ Space Science Center, Morehead State University; ⁷ Dept. of Physics, Middlebury College, Middlebury

1. Introduction

We present ongoing results from the Chandra ACIS Survey of M33 (ChASeM33), a 1.4Ms deep survey to investigate the small and large-scale distribution of the Hot Ionized Medium (HIM), the source populations that shape it, and their mutual interaction. ChASeM33 (Plucinsky et al., 2007, astro-ph/0709.4211) provides the highest angular resolution yet achievable in X-ray astronomy (1") and has a limiting luminosity (absorbed) for point sources of 1.6e35 erg/s (0.35-8.0 keV bandpass).

In this study we focus on the diffuse extended X-ray emission from NGC604, the largest giant HII-region in M33. The multi-energy band X-ray imaging presented here is the deepest obtained to date of NGC604 (300ks) and reveals an unprecedented level of detail.

We also show the first X-ray spectra of the diffuse emission (0.35-2.0 keV) which allow us to constrain fundamental parameters of the ISM, such as gas temperatures, densities, and filling factors.

2. Results

The most striking results concern the spatial extent of the soft X-ray emission and the remarkably good morphological anticorrelation between the emission originating at soft X-rays and $H\alpha$ (see Fig. 1).

Fig. 1: Left panel: Morphological anti-correlation between $H\beta$ (red), $H\alpha$ (green), and soft X-rays (0.35-1.1 keV, blue). **Right panel:** Three color high resolution (2'')Chandra X-ray image (red: 0.35 - 1.1 keV, green: 1.1 - 2.6 keV, blue: 2.6 - 8.0 keV).

The soft X-ray emission is much more extended along the N-S axis of NGC604 than previous measurements indicate, reaching 90% (= 372 pc) of the extent of the H α -emitting gas.

Figs. 1, 3, and 4 show that all cavities (C1-C3) and bubbles (B1-B3) are filled with hot gas (see Fig. 5 for their locations).

The Chandra ACIS Survey of M33 (ChASeM33): Investigating the Hot Ionized Medium of NGC604

Right Ascension (2000.0) Right Ascension (2000.0) Fig. 3: ACIS-I contour maps are smoothed with a Gaussian filter of FWHM = 2.0" and are overlaid onto a HST-H α -image of NGC 604.

Fig. 6: Spectra extracted from regions shown in Fig. 5 cover the range from 0.35-2.5 keV 90%-confidence contours are plotted for the total diffuse emission (label 'T').

CJ	0.5
B1	0.6
B2	0.5
B3	0.6
Т	0.6
Notes: Co	ol. (1): A
Plasma te	mperat
hydrogen	colum
is achieve	d, usin
and unabs	orbed
the erro	r com
(Freedman	n et al.
filling fact	tor of f
morp	nol
 The pr	101

(1)

logical comparison between X-ray, FUV, optical, and FIR emission (see Fig. 2) suggests that the bubbles and cavities visible in $H\alpha$ are powered by the massive OB and WR-star associations in the center of NGC 604.

The diffuse X-ray emission (Fig. 6) can be well fitted with a 2-component model consisting of a photoelectric absorber (phabs) and a thermal plasma (nei).

3. Conclusions

This work is supported by NASA Chandra award number GO6-7073A.

ole 1: Derived physical parameters												
egion	kT	$F_{\rm X,abs}$	$F_{\rm X,unabs}$	$L_{\rm X,unabs}$	V	$M_{\rm X}$	$n_e (\mathrm{cm}^{-3})$					
	keV	$10^{-14}\mathrm{erg}\mathrm{s}^{-1}\mathrm{cm}^{-2}$		$10^{35}{\rm erg}{\rm s}^{-1}$	$10^{60}\mathrm{cm}^3$	M_{\odot}	$f_{ m X}$					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	0.1	0.5	0.8			
C1	$0.325 {\pm} 0.075$	1.68±0.32	2.27±0.32	4.52±0.72	12.5±6.98	757±51	0.33	0.15	0.12			
C2	$0.810{\pm}0.095$	$0.98{\pm}0.92$	$1.23 {\pm} 0.92$	2.45 ± 1.83	$3.62 {\pm} 0.77$	195 ± 85	0.29	0.13	0.10			
C3	$0.567{\pm}0.145$	$0.33 {\pm} 0.13$	$0.45 {\pm} 0.13$	$0.90{\pm}0.26$	$4.85{\pm}1.45$	294±135	0.18	0.08	0.06			
B 1	$0.616{\pm}0.168$	$0.25{\pm}0.08$	$0.31 {\pm} 0.08$	$0.62{\pm}0.16$	$1.40{\pm}0.14$	85 ± 28	0.27	0.12	0.09			
B2	$0.536{\pm}0.209$	$0.38{\pm}0.16$	$0.54{\pm}0.16$	$1.08 {\pm} 0.32$	$0.88{\pm}0.08$	71±18	0.33	0.15	0.12			
B3	$0.685{\pm}0.168$	$0.47 {\pm} 0.16$	$0.59 {\pm} 0.16$	$1.18 {\pm} 0.32$	$3.17 {\pm} 0.32$	171±64	0.23	0.11	0.08			
Т	$0.683{\pm}0.016$	$3.74{\pm}0.36$	$5.32{\pm}0.36$	$10.6 {\pm} 0.72$	26.4 ± 0.72	1422 ± 182	0.23	0.10	0.08			
tes: Col. (1): All spectra were extracted from eventlists cleaned from point sources to trace the pure diffuse emission. Cols. (2):												
sina temperatures are derived using Aspec and a (<i>phabs</i> \times <i>net</i>)-model (borkowski et al. 2001) and neezing the neutral trogen column density at $N_{\rm ex} = 5.21 \times 10^{20} {\rm cm}^{-3}$ (Gonzalez Delgado & Párez, 2000). A conversion from (keV) \times (K)												
$K = 1.16 \times 10^7 kT$ (keV) with kT being the energy of a thermal source. Colo(2) and (4): Absorbed												
$(11) = 1.10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$												
Δr unabsolute nucles are instea for the 0.55-2.0 KeV energy band. An uncertainties are given on a 90%-connuclice level using												
error command in ASPEC. Col. (3). A-ray luminosities between $0.33-2.0$ KeV assume a distance to M35 of $D = 817$ kpc												
section and the section of the section density obtained if a final field M_X is based on the electron density obtained if a												
ing facto	or of $f_{\rm X} = 0.8$ is a	dopted.										

• The H α -emitting gas seems to confine the X-ray gas which implies a high filling factor for the HIM. Adopting $f_{\rm X} = 0.8$, yields $n_{\rm e} \leq 0.1 \,\mathrm{cm}^{-3}$ (cf. Table 1).

• X-ray luminosities and gas masses in the main cavity (B1+B2+C1+C3) are consistent with stellar mass loss from $\sim 200 \text{ O/WR-type stars}$ (including evaporation from thermal heat conduction).

• The X-ray-enhancement visible in cavity C1 (Fig. 2) can likely be attributed to a stellar wind which got hit by a reverse shock after it impinged onto the H α -ridge.

• As the high-pressure wind-driven X-ray gas is able to penetrate the whole volume it seems plausible to assume breakout of hot gas on large scales.