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Key Scientific questions
• How do shocks in relativistic jets evolve?

• How are particles accelerated?

• What are the dominant radiation processes?

• How do 3-D relativistic particle simulations reveal

  the dynamics of shock fronts and transition regions?

• How do shocks in relativistic jets evolve under

   various ambient plasma and magnetic fields?

• How do magnetic fields generated by the Weibel

  instability contribute to jitter radiation?

 -- for some answers see Nishikawa et al. 2006, ApJ, 642, 1267 --

Results
• The Weibel instability creates filamented currents and density

  structure along the propagation axis of  the jet.

• The growth rate of  the Weibel instability depends on the Lorentz

  factor, composition, and strength and direction of ambient B fields.

• The electron-ion ambient enhances the generated magnetic fields

   with the excitation ion Weibel instability.

• This enhanced magnetic field with electron-ion ambient plasma may

  be an origin of large upstream magnetic fields in GRB shocks.

• In order to understand the complex shock dynamics of relativistic

  jets, further simulations with additional physical mechanisms such

  as radiation loss and inverse Compton scattering  are necessary.

• The magnetic fields created by the Weibel instability generate

  highly inhomogeneous magnetic fields, which are responsible for

  Jitter radiation (Medvedev, 2000, 2006; Fleishman 2006).

Future plans
• Further simulations with a systematic parameter survey will be

   performed in order to understand shock dynamics using the newly

   developed codes with OpenMP and MPI.

• Further diagnostics will be developed including calculation of jitter

  radiation.

• Implement better boundary conditions at the free boundaries

• Investigate radiation processes from the accelerated electrons and

  compare with observations (AGN, GRBs, SNRs, etc).

Goal: Radiation from collisionless shock

GRB Shock simulations

Hededal Thesis:

ala Hededal & Nordlund 2005 (astro-ph/0511662)
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(astro-ph/0506559)

N( ) -p -  = -(p - 1)/2 = -0.70 p = 2.4

    We investigate here the effects of plasma instabilities driven by e± pair jets. The injection of e± pairs induces strong streaming motions in the ambient medium.

Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e± pairs are responsible for the excitation of near-

equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling

between e±  pairs and ions, and may help explain the origin of X- ray radiation from hot spots in the relativistic jets such as M87. The magnetic fields generated by

the Weibel instability create highly nonuniform, small-scale magnetic fields, which contribute to the electron’s transverse deflection. The radiation from electrons

in these environments (jitter radiation) is different from synchrotron radiation.

Weibel instability
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V distribution functions (parallel, perpendicular to the jet)

(Nishikawa et al. 2006)
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Density perturbation by the Weibel instability
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