Spectrum of Sgr A*

- Wide range of v 's
- Peaks in sub-mm
- Extremely faint sub-Eddington
- Variability detected in almost all wavelengths but not simultaneous
 - Is the variability correlated?
 - Will it address the emission mechanism?

Outline

- Light curves in NIR, X-rays & sub-mm wavelengths
- Cross correlation:
 - NIR vs X-ray
 - NIR vs. sub-mm
- Explain:
 - X-ray /soft γ-ray emission by ICS
 - NIR and sub-mm by Synchrotron

The Nature of Simultaneous near-IR and X-ray Flares from Sgr A* at the Galactic center

F. Yusef-Zadeh

X-Ray
(XMM)Near-IR
(HST)Sub
(C• G. Belanger• H. Bushhouse• D.• A. Goldwurm• C. Heinke• B.•F. Melia• M. Wardle• L.•B. Warwick• S. Shapiro• G.

A, Goldwurm

Radio

(VLA+ATCA+BIMA)

- D. Roberts
- G. Bower

Sub-millimeter (CSO, SMT)

- D. Dowel
- B. Vila Vilaro
- L. Kirby
- G. Novak

Soft γ-Ray (INTEGRAL)

- G. Belanger
- A. Goldwurm
- M. Renaud
- R. Terrier
- F. Melia
- N. Lund
- J. Paul
- G. Skinner

Two Epochs of Observations of SgrA* in 2004

September Campaign

- NIR Light Curves of SgrA* (blue, red, green)
- Amp: 10 % to 25% or 3 to 4 times the quiescent flux (2.8mJy at 1.6μm)
- Duration: multiple peaks, lasting from 20 minutes to hours
- Flare activity: overall fraction of activity is about 30-40% of the observed time
- Spectrum: Unknown

0.14

158.7

158.8

Day since JD2453093

158.9

159

0.14

159.7

159.75

159.8

Day since JD2453093

159.85

159.9

NIR variability in 1.6, 1.87 (Pa α line), 1.9 μ m

- X-ray Light Curves of Sgr A* (2-10 keV)
- **Amp**: 35 times the quiescent X-ray flux
- Duration: multiple peaks, lasting from 10 minutes to 3 hours
- Spectrum:
 - Power-law with α = 0.6+/0.5
 - L(2-10 keV)=7.7 x10³⁵ erg/s
- Flare activity: Two clusters of flares in one week

Belanger et al. 2005

NIR (1.6-1.9µm) vs. X-Ray (September Campaign)

- Simultaneous NIR and sub-mm light curves of Sgr A*
- Amp: 11 mJy at 1.6micron; 4.7Jy at 350 micron
- Duration: multiple peaks in near-IR lasting for 40min;
- One peak lasting for two hours
- Spectrum:
 - First evidence of variability in submm

Simultaneous X-ray, NIR & Sub-mm Flares

Near-IR

• Due to Synchrotron: $E_e=1.1$ GeV, Beq=10G, $\tau_{nir}=40$ min

Sub-mm

- Due to Synchrotron τ_{nir} = 12h
 - Similar to NIR (the same population of electrons)
 - $F_{850\mu m}$ =0.6 Jy, E_e =50 MeV, $F_{1.60\mu m}$ =11 mJy, E_e =1GeV, $\alpha = 0.6$

X-rays

- X-Rays cannot be due to Synchrotron: (E_e proportional sqrt (v / B))
 - τ_{nir} =1min, B=10G, E_e=10 GeV
 - Spectral index between NIR and X-ray is steep
- X-Rays due to ICS: (E_{photons} proportional E²_e x v seed photons)
 - (a) diameter=10R_{sch}, F_{850µm}=4Jy, E_e=1GeV
 - (b) diameter= $10R_{sch}$, F_{nir} =10 mJy, E_{e} =50 MeV
 - $E_{\text{predict}} = 2x10^{-12} \text{ erg/cm2/s/keV}, \quad E_{\text{obs}} = 1.2x10^{-12} \text{ erg/cm2/s/keV}$
- Lack of one-to-one X-ray detection:
 - Spectral index
 - Magnetic field

NIR Flares with and without X-ray Counterparts

- The softer (steeper) the particle spectrum, the higher the X-ray flux
- The harder (flatter) the particle spectrum, the weaker the Xray emission

Flare 1

Flare 2

X-ray Flux as a function of spectral index

First IBIS / ISGRI Images of the Galactic Center

- Six known high-energy sources in the central 2 ° × 2° of the Galaxy
- Detection of IGR J1746-290 coincident with Sgr A*
- A significant excess (8.7 _) at ~ 1' from Sgr A* (4.7 _ in 40-100 keV)
- Power-law α = 2.04 +/- 0.98 and L(20-120 keV) = 4.8 10³⁵ erg/s
- Belanger et al. (2005b)

INTEGRAL and XMM Variability

- INTEGRAL:
 - 20-30 keV light curve of IGR J17456-290
- Cross Correlation
 - During the 2 bright SgrA* flares seen with XMM INTEGRAL was in the radiation belts (Belanger et al. 2005b)

Soft γ -ray Flux as a function of spectral index

 The spectral index in NIR ranges ~ 0.5-4 (Ghez et al. 2005;

 The population of particles producing NIR emission can explain the soft γray emission

Conclusions

- Correlation between a near-IR and X-ray/soft γ-ray flare: the same population of particles
 - ICS may account for steady X-ray/γ-ray source
- Lack of one-to-one correlation: spectral index and/or magnetic field variation
- Correlation between a near-IR and sub-mm flare: the same population of particles
 - Low-energy component of power-law spectrum
- The flow always fluctuates even in its quiescent phase
- Duration of flaring set by dynamical mechanisms (adiabatic expansion)

TeV Emission From the Galactic Center

 Aharonian et al. (2004)

Radio (7mm) vs X-ray (March Campaign)

- Lag time between Xray/NIR flare and sub-mm peak 4-5 hours
- Time delay between Xray/NIR and radio peak is one day
- An expanding synchrotron source in an optically thick medium
- As the electrons cool, the synchrotron selfabsorption frequency moves to longer wavelengths
- Delay as a function of frequency expected

6 and 1.2cm VLA images of the Galactic Center

Conclusions

- Flare correlation: simultaneous vs delayed
- Correlation between a near-IR and X-ray/soft γ-ray flare: the same population of particles
- Evidence for a NIR flare with quasi-periodic 35min behavior
- The flow always fluctuates even in its quiescent phase:

- ICS may account for steady X-ray/γ-ray source

 An expanding synchrotron self-absorbed blob: outflow

Radio Time Lags Between 7mm and 13mm

- Light curves of SgrA* observed simultaneously at 7mm and 1.2cm
- The spectral index steeper at higher frequencies and during flares consistent with Herrnstein et al. (2004)
- The 7mm peak is leading the 1.2cm peak

