The Global Hot ISM: New Perspectives

Q. Daniel Wang et al.

Absorption spectroscopy

- Add the depth
- Measure the column density, thus the mass
- Direct line diagnostics
- Independent of cool gas absorption

External views:

- Global properties
- *Relationship between various components*
- Dependence on galaxy properties and environment

Absorption Sight Lines

More Sources Global HISM distribution

- LMXBs with $|b| > 2^{\circ}$ and S/N > 7 per bin at ~0.6 keV
- Excluding sources with identified intrinsic emission/absorption features
- Ten LMXBs with 17 observations (6 with the LETG) are selected

Global distribution models

• $\mathcal{M}_{\mathcal{H}} \sim 7.5(2.5 - 16) \times 10^8$ Msun X- ray absorption is primarily around the Galactic disk within a few kpc!

LMC X- 3 as a distance marker

- BH X- ray binary, typically in a high/soft state
- Roche lobe accretion
- 50 kpc away
- $\mathcal{V}_s = +310 \, \text{km/s}$
- Away from the LMC main body

Wang et al. 2005

LMC X- 3: absorption lines

The EWs are about the same as those seen in AGN spectra!

Summary: Galactic hot ISM

- No significant X- ray absorption beyond the LMC (~< 10¹⁹ cm⁻
 ², assuming the solar abundance)
- A thick Galactic disk with a scale height 1- 2 kpc, ~ the values of OVI absorbers and free electrons
- Mean $T \sim 10^{6.3+-0.2} \text{ K} \sim 10^{6.1} \text{ K}$ at solar neighborhood

External Perspective: NGC 3556 (Sc)

•Active star forming

- •Hot gas scale height ~ 2 kpc
- • $L_x \sim 1\%$ of SN mech. Energy input

Red – optical Green – 0.3- 1.5 keV band Blue – 1.5- 7 keV band

Wang et al. 2004

NGC 4594 (Sa)

• $L\chi \sim 2\%$ of Type Ia SNe energy alone

Not much cool gas to hide or convert the energy
Mass and metals are also missing! –Mass input rate of evolved stars ~ 1.3 M_{sun}/yr –Each Type Ia SN 0.7 Msun Fe

Missing stellar feedback in early- type disk galaxies!

Red: optical; Green: 0.3- 1.5 keV; Blue: 1.5- 7 keV

Wang & Li 2005

Galaxy formation simulations vs. observations: missing accreted IGM

Toft et al. (2003)

Summary: Nearby galaxies

- Good News
 - At least two components of diffuse hot gas:
 - Disk driven by massive star formation
 - Bulge heated primarily by Type- Ia SNe
 - Characteristic extent and temperature similar to the Galactic values
- Bad news
 - Missing stellar feedback, at least in early- type spirals.
 - Little evidence for X- ray emission or absorption from IGM accretion
 - maybe good news for solving the over- cooling problem.

Are these problems related?

Galactic bulge simulation: density

3x3x3 kpc³ box SN rate ~ 4x10 ⁴ /yr Mass injection rate ~0.03 Msun/yr Logarithmic scale Statistical steady state ~ adiabatic

Tang et al. 2005

Galactic bulge simulation: Fe

- Fe- rich ejecta dominate the high- Temission
- Not well- mixed with the ambient medium
- May cool too fast to be mixed with the global hot ISM

Non- uniformity effects

What we do not know:

- Filling factor
- Physical and chemical states
- Kinematics

- Overall spatial distribution
- Heating, transporting, and cooling
- Effects on galaxy formation and evolution

Sample of normal disk galaxies

Galaxy	Ниббle	\mathcal{D}	Incl. ang.	Exp. Time (ks)
Name	Туре	$(\mathcal{M}pc)$	(deg)	
N4244	Sd/LSB	3.6	85	60
N4631	Sd	7.5	85	60
N3556	Sc	14.1	80	60
N4565	Sб	13.4	87	60
N4594	Sa	8.9	84	19

All with low Galactic foreground absorption ($N_{H} < 3 \times 10^{20} \text{ cm}^{-2}$)