Cosmic Star Formation History and Chandra Deep Field Surveys

Pranab Ghosh Tata Institute Nicholas White NASA/GSFC

P. Ghosh Six Chandra Talk

Plan

- Evolution of X-ray luminosity
- Role of cosmic star formation history
- Status of understanding
- logN-logS plots: X-ray diagnostics
- Normal/Starburst galaxies vs. AGN
- Correlations between X-rays & other wavebands: Optical, IR, Submm, Radio

L_x Evolution: Star Formation History

Jan-19-06

P. Ghosh Six Chandra Talk

L_x Evolution: Understanding

Theory: • L_v rises by ~10 as $z=0\rightarrow 1$ for typical LMXB lifetimes: $\tau_{PSNB} \sim 2 \text{ Gyr}$ $au_{LMXB} \sim 1 \; Gyr$ • L_x/L_B rises by ~10 only if L_B has little evolution

Observation:

- L_x/L_B rises by ~10 as z=0 \rightarrow 1
- But L_x rises by ~3 ? Brandt et al. 2001 Hornschemeier et al. 2002
- Then L_B falls by ~3 as L_x rises ??

L_x Evolution: Understanding

How to understand rise of L_x by ~3 in $z=0 \rightarrow 1$?

Jan-19-06

P. Ghosh Six Chandra Talk

L_x Evolution: Understanding

• LMXB evolution slower?

 $\tau_{\text{LMXB}} \sim 2 \text{ Gyr }?$

 Bandpass change factor not right due to soft excess?

 $L_x = 4\pi d_{L^2} f_x (1+z)^{\Gamma-2}$

 $\Gamma = 2$ normally used Kim et al. '92, Ptak et al. '99

But... LMXB spectra have soft excess?

LMXB Spectrum: Soft Excess

spectrum of EXO 0748–676

Normal/Starburst Galaxies vs. AGN

Discriminators

- X-ray luminosity: Critical value ~ 3 x 10⁴² erg s⁻¹, AGNs more, galaxies less
- X-ray spectra: Critical hardness ratio ~ 0.8, AGNs harder, galaxies softer
- f_x/f_{opt} ratio: Critical value ~ 0.1, AGNs more, galaxies less
- Optical spectroscopy: Broad/Hi-ionization AGN emission lines
- Radio properties

logN-logS Diagnostics

 Bulk (85-95%) of X-ray background power from AGNs

• Only ~5-15% from galaxies:

Starbursts dominate in soft

Quiescents dominate in hard

 But in number density, star-forming galaxies will overtake AGNs at soft flux ~ 10⁻¹⁷ erg cm⁻² s⁻¹

Summary

 Lx evolution qualitatively correct, details to be clarified:

- Observational issues
- More detailed theory
- XRB power dominated by AGNs, but number counts dominated by normal/starburst galaxies at faint fluxes
- X-ray correlations with other wavebands indicate diagnostic value of X-rays in probing star formation

logN-logS Diagnostics . 1

Normal/Starburst Galaxies vs. AGN

Bauer et al. 2004

0 26 > 44.5 = 43.5 - 44.5= 42.5 - 43.5= 41.5 - 42.524 = 40.5 - 41.5< 40.5 AGN 22 (mag) ≌ 20 18 AGN 16 GALAXI I I I I I 1.1.1.1.1 10-13 10^{-15} 10^{-14} 10^{-16} 0.5–8.0 keV flux (erg cm $^{\rm -2}$ s $^{\rm -1})$

X-ray/Optical Correlations

Optically Bright X-ray Faint (OBXF) galaxies

- OBXF : $\log(f_x/f_R) \sim -2$ or less
- "Distant analogs of `normal' galaxies in the local universe." Hornschemeier et al. 2003 z ~ 0.1→0.8
- OBXF dominated by non-AGN: quiescent and starburst galaxies, some low-luminosity AGN
- L_x > "normal" galaxies, soft X-ray spectra
- OBXF logN-logS slope ~ 1.7 very steep, as for starbursts: will dominate at low S
- Several off-nuclear ULXs

X-ray/IR Correlations

- Tight correlation between X-ray and 15μm
 IR galaxy populations Alexander et al. 2002
- Luminous IR starburst galaxies: dust enshrouded star formation
- $\log(f_x/f_{IR}) \sim -1.5$ or less, non-AGN by all counts
- 15µm good indicator of star-formation

rate X-rays also good indicator

X-ray/Submm Correlations

- X-rays from 7 of 10 bright 850 μm SCUBA sources
- 5 of 7 are AGNs
- Anti-correlation between 850 μm and X-rays?
- AGNs contribute negligibly to submm emission
- Submm emission basically powered by star-formation, so can be used to probe star formation

Jan-19-06

P. Ghosh Si

Six Chandra Talk

X-ray/Radio Correlations

- Large overlap between X-ray and 1.4 GHz radio sources
- Excellent correlation between X-ray and radio luminosity, same at moderate z as in local universe
- X-rays good indicator of star formation, as radio emission is

