Chandra: An X-Ray Vision of Star Formation
Scott J. Wolk
CfA
With a lot of help…

About this Meeting

- What Are the “Three Great Observatories”
- What is the “White Paper”?
- About the splinter sessions
- What are the Chair’s Comments?
About this Meeting

- What Are the “Three Great Observatories”
- What is the “White Paper”?
- About the splinter sessions
- What are the Chair’s Comments?
Key Questions in Star Formation all 3 Great Observatories can help Address

- Goal: Understand how stars are assembled from molecular material to the zero-age main sequence
 - Use a multiwavelength approach:
- Process:
 - Identify objectives, key measurements and required observations.
 - These need not be wholly reliant on the Great Observatories
- Rotation and Dynamos
- Disk Evolution
- Populations and their evolution
- Others?

Observations which Bridge us between facilities

- Extant
 - Chandra
 - Spitzer
 - HST
 - Large Optical
 - Keck, Gemini, Magellan
 - Single Dish
 - CSO, JCMT, IRAM
 - Interferometers
 - VLA, BIMA, OVRO, SMA
- In Development
 - Con-X
 - SOFIA
 - JWST
 - Herschel
 - CARMA
 - ALMA
 - Keck interferometry
 - GMT
 - VLA upgrade
 - What about UV observations?
Chandra Launch

- Launched on Space Shuttle Columbia commanded by Eileen Collins 7/23/99
- Columbia placed Chandra and IUS in 150 mile orbit
- Chandra was the longest and heaviest payload launched on the Shuttle
- Payload bay doors open 1.5 hours after launch
- Chandra/IUS deployed 7.5 hours after launch
Deployment of Chandra, July 23, 1999

Chandra Spacecraft
Key Features of Chandra

- **High Spatial Resolution** – Allows it so separate sources at ~2kpc (denser more massive star forming regions).
- **Hard X-ray Sensitivity** – Can penetrate dusty environs.
- **Good Spectral Resolution** (imaging) – Can determine bulk coronal properties.
- **Long Orbit** - Lets us to see the lifecycle of flares.

Chandra Basics: Imaging Spectroscopy
BN/KL Region

VLT JHK

COUP 2003

10 arcsec
Transmission Gratings: Capella

Dispersed Spectrum

Imaging Spectrum

Transmission Gratings: θ¹ Orionis C (Schulz et al. 2000)
Transmission Gratings: HD 98800
(Kastner et al. 2004)

HD 98800 vs TW Hya
Ne IX in TW Hya
arises at lower temperature
and higher density.

Timing
Defining a flare

- Stars are at their characteristic level ~75% of the time:
 - $L \approx 0.03\% L_{bol}$
- Elevated periods and flares are consistently hotter than characteristic periods.
 - $K_{T,\text{char}} \approx 2.35\text{keV}$
 - $K_{T,\text{peak}} \approx 7\text{keV}$
 - $K_{T,\text{flare}} \approx 3.45\text{keV}$
 - $K_{T,\text{peak}} \approx 7\text{keV}$
 - $K_{T,\text{1}} \approx 670-900\text{eV}$

X-Ray Spectrum of a Flaring Source

- Characteristic
- Elevated
- Flare
- Peak Flare
Telescope System

- High Resolution Mirror Assembly:
 - 4 nested pairs of grazing incidence paraboloid and hyperboloid mirrors
 - Length: each 83.3 cm (32.8 in) long
- Weight: 956.4 kg (2,104 pounds) total
- Focal Length: 10 meters (32.8 ft)
- Outer Diameter: 1.2 meters (3.9 ft)
- Field of View: 1.0 degree diameter
- Ang. Resolution: 0.5 arcsec
- Altitude Control: 6 reaction wheel control 2 inertial reference units
- Aspect Camera: 1.40 deg x 1.40 deg field-of-view
- Pointing Stability: 0.25 arcsec (RMS) radius over 95% of all 10 second periods
- Pointing Accuracy: 30 arcsec 99% of viewing time
- Remarks: Mirrors have an effective area of 400 sq. cm. @1 keV; 600 A iridium coating

Science Instruments

- Advanced Charged Couple Imaging Spectrometer (ACIS):
 - Ten CCD chips in 2 arrays provide imaging and spectroscopy;
 - Imaging resolution is 0.5 arcsec over the energy range 0.2 - 10 keV;
 - Sensitivity: 4×10^{-15} ergs-cm$^{-2}$ sec$^{-1}$ in 10^5 s
- High Resolution Camera (HRC):
 - Uses large field-of-view micro-channel plates to make X-ray images: ang. resolution < 0.5 arcsec over field-of-view 31x31 arcmin;
 - Time resolution: 16 microsec
 - Sensitivity: 4×10^{-15} ergs-cm$^{-2}$ sec$^{-1}$ in 10^5 s
- High Energy Transmission Grating (HETG):
 - To be inserted into focused X-ray beam;
 - Provides spectral resolution of 60-1000 over energy range 0.4 - 10 keV
- Low Energy Transmission Grating (LETG):
 - To be inserted into focused X-ray beam;
 - Spectral resolution of 40-2000 over the energy range 0.09 - 3 keV