X-ray Diagnostics of Grain Depletion in Matter Accreting onto T Tauri Stars

Paola Testa (MIT)
Jeremy Drake (SAO)
Lee Hartmann (SAO)

OURLINE

- Ne/O in ACTIVE STARS:
 dependency on activity level and implications

- X-ray SPECTROSCOPY of CLASSICAL T TAU Ri STARS:
 abundance anomalies
 signatures of accretion
 Ne/O in TTS

- Ne/O as DIAGNOSTICS for the ACCRETING MATERIAL
Neon Abundance in Stellar Coronae

- Solar and stellar studies show some evidence of coronal abundances different from photospheric abundances: interest in study of coronal abundances for coronal plasma physics

- *Chandra* – *XMM* high spectral resolution allows line-based abundances analysis based on strong X-ray emission lines of H-like and He-like abundant ions

- Ne/O ratio interesting because looking very similar in all observed stars

Chandra HETG Spectra of Active Stars

![Graph](image_url)
Neon ABUNDANCE in STELLAR CORONAE

(Drake & Testa 2005)

Ne/O diagnostics we use a T-insensitive line ratio of NeIX, NeX, OVIII (similar to the diagnostics used by Acton et al. 1975 on solar spectra)

- BASED on STRONG LINES (RELIABLE ATOMIC PHYSICS)
- INDEPENDENT on DEM(T)

Neon ABUNDANCE in STELLAR CORONAE

- Ne/O

(Drake & Testa, 2005)
Neon Abundance in Stellar Corona

- Ne/O extremely constant on a wide range of activity levels
- Ne/O in coronae of nearby stars ~2.7 times higher than the assumed solar photospheric value

(Drake & Testa, Nature, 2005)

Possible Important Implications in Solar Context

Ne and the Solar Model Problem

- Models calculated with latest solar abundances (Asplund et al 2004) fail to predict sound speed, He abundance and depth of convection zone inferred from helioseismology (Bahcall et al 2005; Antia & Basu 2005)
- Ne higher by a factor > 2.6 can solve the solar model problem (Bahcall et al 2005; Antia & Basu 2005; Antia & Basu 2004)
- Ne cannot be measured in solar photosphere
X-ray **HIGH RESOLUTION SPECTROSCOPY**

of **CLASSICAL T TAURI STARS**

- **TW Hydreae**

(see Joel Kastner’s talk)

X-ray **SPECTROSCOPY of CTTS**

- **TW Hydrae**
 - very high Ne, weak Fe, reminiscent of active stars

(Kastner et al., 2002)
X-ray SPECTROSCOPY of CTTS

- **TW Hydrae**

 - very high Ne, weak Fe, reminiscent of active stars
 - peculiar f/i ratio in cool He-like triplets (Ne, O)
 - thermal distribution extremely peaked

 \[\text{(Kastner et al., 2002, Stelzer & Schmitt 2004)}\]

SPECTRUM LIKELY PRODUCED in ACCRETION SHOCK
X-ray SPECTROSCOPY of CTTS

is TW Hya the only young object with these peculiar characteristics?

- **BP TAU**: XMM-RGS spectra show high density for OVII
 (Schmitt et al. 2005)

- **HD 163296 (HERBIG Ae STAR)**: remarkably isothermal plasma (BUT only low resolution spectrum, ACIS-I, Swartz et al. 2005)

- **OTHER CTTS** observed at high spectral resolution (SU Aur, DoAr 21) are heavily absorbed Ne, O He-like triplets are inaccessible (e.g. Smith et al. 2005)

NEED of HIGH RESOLUTION SPECTRA
What does Ne/O look like in these accreting TTS with respect to the constant value of "normal" stars?

The Ne/O in TW Hya and BP Tau should reflect the composition of the accreting material.

Why should Ne/O be different in TW Hya?

- grain depletion?
- coronal abundance anomalies?
- fractionation effects in magnetospheric accretion?

should be similar in TW Hya and BP Tau
Why should Ne/O be different in TW Hya?

- metal depletion in accreting gas already suggested by:
 - weak or absent Si lines in UV spectra (Valenti et al. 2000, Herczeg et al. 2002), low Si and Al in jet gas (Lamzin et al. 2004)

BUT

unlike comparison of Ne with metals (Fe, Si, Mg), the Ne/O diagnostics appears to be robust to the effects of compositional fractionation seen in coronal plasma

Ne is volatile while O is readily depleted in silicates

Ne/O is a good diagnostics for grain depletion
DIAGNOSTICS from Ne/O

Why should Ne/O be different in TW Hya?

- grain depletion?

accreting grains should be destroyed by UV/X-rays

- Ne/O high in TW Hya implies grains are NOT accreted

Why?

DIAGNOSTICS from Ne/O

Why should Ne/O be different in TW Hya and BP Tau?

- TW Hya (~10 Myr) and BP Tau (~ 0.6 Myr) have significantly different ages

 different evolutionary state of the disk

- grains in TW Hya must have developed sufficient size to avoid accretion
Evidence for Advanced Grain Formation in TW Hya

- grain formation and coagulation into larger particles
 (Calvet et al. 2002)

- centimeter size bodies in the TW Hya’s disk (Wilner et al. 2005)

- developing gap possibly caused by a growing protoplanet
 (Calvet et al. 2002)

Conclusions

- **Neon Abundance**
 - Ne/O constant in stellar coronae
 - Ne/O is ~2 times higher in TW Hya, not in BP Tau which is also accreting
 - O is very likely depleted in the very inner disk of TW Hya
 - Ne/O robust diagnostics for grain depletion, as compared to metal deficiency

- **X-rays Spectra Are Unique Means to Probe**
 - the processes at work in the accretion shock
 - the composition of the accreting material, i.e. the state of the very inner disk
Models calculated with latest solar abundances (Asplund et al 2004) fail to predict sound speed, He abundance and depth of convection zone inferred from helioseismology (Bahcall et al 2005; Antia & Basu 2005)

- Ne higher by a factor > 2.6 can solve the solar model problem (Bahcall et al 2005; Antia & Basu 2005)

- Ne cannot be measured in solar photosphere