Formation of Terrestrial Planets and Debris Disks

Scott Kenyon (SAO)
Ben Bromley (Utah)
Gemini, … (JPL)

Central Goals

• Simulate an entire solar system

• Links to other solar systems
 * Terrestrial planets
 * Jovian planets
 * Icy planets (Pluto, debris disks)
Rocky Planets

• Location
 * close to Sun

• Size of a rocky planet
 * 100-10000 km radius

• Types
 * Planets – Mercury, Venus, Earth, Mars
 * Asteroids – collision fragments
 * Zodiacal light – dusty debris

Inner Solar System
Top View
Our Solar System
Side View

A Dusty Disk
1 Myr
A Solar System
10-100 Myr

HK Tau/c – Stapelfeldt et al
Major Issues

• Evolution of Gas
 * viscosity
 * evaporation

• Evolution of Dust ***
 * collisions
Planets Grow in a Dusty Disk

* disk radius = 100-1000 AU
* disk mass = $10^4 - 10^5 M_{\text{Earth}}$

Dust settles to midplane

* 1 mm and larger particles
* circular orbits

Safronov, Wetherill, Weidenschilling

Dust settles to midplane

* 1 mm and larger particles
* circular orbits
Planet Formation

• Coagulation
 * dust \rightarrow planetesimals \rightarrow planets
 * make Earths
 * Earths accrete gas
 * Earths stir up debris
 * Debris scatters radiation from star
 * Scattered radiation is visible

• Wetherill, Weidenschilling, Lissauer, …

Highlights

• Successes
 * Earth-like planets in 10-30 Myr
 * Pluto-like planets in 10-100 Myr
 * Kuiper Belt properties
 * Vega-like debris disks

• Challenges
 * Jupiters are hard
 * Sedna
HST: Bright Rings

Spitzer: Evolution of Dust
IRAS: Taurus-Auriga

Spitzer: Model Tests
Spitzer: Evolution of Dust

Evolution of Blob of Dust
Kepler: Dust Eclipses

Observational Tests

- **HST**: disk structure
- **Spitzer**: IR excesses
- **Chandra**: dust/gas evolution
 * Kastner
 * Testa
Summary

• Terrestrial planets form quickly
 * 10% of Earth mass in 1 Myr
 * 1 Earth mass in 10-20 Myr

• Collisions produce IR excess from dust
 * excess is observable
 * lasts for 1-100 Myr

Coming Attractions

• Theory: better calculations
 * Jupiter
 * Outer solar system

• Observations
 * FUV/EUV spectra: evolution of gas
 * JWST: evolution of dust
 * Kepler: transient events
Collision Outcomes

• Energy scaling algorithm

• Merger
 * collision energy < binding energy

• Disruption
 * collision energy > binding energy

Coagulation

• Statistical mechanics approach
 * collision rate: \(N_{ij} \sigma v F_g \)
 * \(N_{ij} \) bodies of mass \(M_j \)
 * near-circular orbits: \(e_{ij}, i_{ij} \)
 * multiple annuli (32-64): \(a_i, \Delta a_i \)

• Physics
 * collisions
 * collective velocity motion
 * gas accretion, drag
N-Body Code

• Encke method for largest bodies
 * follows Keplerian orbits
 * direct force evaluations
 * hierarchical timesteps

• Coupled to coagulation code
 * accretion of small bodies
 * drag from gas and small bodies

Mergers

•

•
Disruptions

• Viscous stirring
 * all velocities increase
• Dynamical friction
 * small bodies brake large bodies
• Gas, Poynting-Robertson drag
 * brake small bodies
• Collisions
 * brake large bodies

Velocity Evolution
Dust

An Asteroid

10^{18} to 10^{21} dust grains
Three Phases of Growth

• Slow growth
 * geometric cross-sections
 * all bodies grow linearly

• Runaway growth
 * gravitational focusing
 * largest bodies grow exponentially

• Oligarchic growth
 * largest bodies grow slowly
 * collisional cascade

The Dust Mass
N-Body Number

The Largest Objects
Two Debris Disks

Dynamical instability
* part of disk collapses
* gravitational instability
* make Jupiters
* Jupiters stir up debris

Earth and Pluto are impossible

Boss, Cameron, …
Our Grid

Debris Disks

- Far-infrared emission
 * small dust grains absorb starlight
 * reradiate at 100 microns

- Optical and near-infrared emission
 * grains scatter starlight

- Disk-like morphologies
 * size of our solar system
β Pictoris

Near-infrared – Lagrange et al

Links to Other Solar Systems

• Our solar system
 * 1000’s of rocky planets & asteroids

• Other solar systems
 * 1000’s of debris disks

• Need a robust formation model
 * numerical simulation of solar system
Our Calculations

• Multiannulus hybrid code
 * 32-64 concentric annuli at 0.5-1.5 AU
 * 1 m to 1 km planetesimals
 * minimum mass solar nebula

• Results after 1-10 Myr
 * planets: Moon to Earth
 * rings of dust