Star Formation: Multiplicity in Massive Stars
Multiple Systems

• Generally: better completeness from several techniques
• E.g. ground + satellite ultraviolet
• Ground: orbit
Cepheids

- 5-7 Msun
- Formerly B stars
- Field stars
- Young ~50 Myr
- Evolved: but binary status unchanged from ZAMS
- EXCEPT for P < 1 yr
- Evolution largely without mass loss
- Cool primary + hot secondary
S Sge Case Study

Ground Based Orbit
Mass Function

• From a single line spectroscopic binary:

\[f(M, m) = \frac{m^3 \sin^3 i}{(M + m)^2} = \frac{A^3 \sin^3 i}{P^2} \]

where M, m are primary and secondary masses, A is the semi-major axis of the primary, i is the inclination

• For each inclination, there is a relation between M and m
S Sge: Mass Function

\[
\begin{align*}
M(\text{comp}) & \quad M(\text{Cep}) \\
\begin{array}{c}
i = 60 \\
i = 90
\end{array}
\end{align*}
\]
Cepheid Masses

- Cepheid + hot companion
- Cepheid ground based orbit
- Companion orbital velocity amplitude from HST or IUE
- Companion mass from temperature
Temperature Discrimination

![Graph showing temperature discrimination with different wavelengths for B9 V, A0 V, A1 V, and A4 V.]
Cepheid Masses

• Measured Cepheid masses
• Lines: predictions from decreasing overshoot from l to r
M(Comp)/M(Cep)
S Sge: Companion Mass

![Graph showing the relationship between M(comp) and M(Cep) with two lines indicating i = 60 and i = 90.](image)
S Sge: IUE spectrum

Spectrum of companion corrected for Cepheid

Slope: A9 V - F0 V

=> M = 1.7 - 1.5 M(sun)
S Sge: Companion Mass

\[M(\text{comp}) \text{ vs. } M(\text{Cep}) \]

- \(i = 60 \)
- \(i = 90 \)

S Sge B----
IUE
Case Study: Y Car

Ground based orbit for Cepheid

Hot companion dominates in ultraviolet

Measure companion velocity with HST STIS
Y Car: HST Velocity

Graph showing the orbital velocity over orbital phase for Y Car, with labels for Companion and Cepheid.
Multiplicity

<table>
<thead>
<tr>
<th>Star</th>
<th>P (d)</th>
<th>E (y)</th>
<th>Triplet</th>
<th>High Res</th>
<th>Orbit Source</th>
<th>Multip. Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Aql</td>
<td>1856</td>
<td>0.16</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>Evans, et al. 2005b</td>
</tr>
<tr>
<td>FF Aql</td>
<td>1430</td>
<td>0.09</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>Evans et al. 1960</td>
</tr>
<tr>
<td>RX Com</td>
<td>1113</td>
<td>0.46</td>
<td>y</td>
<td>H</td>
<td>3</td>
<td>this paper</td>
</tr>
<tr>
<td>Y Car</td>
<td>933</td>
<td>0.46</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>YZ Car</td>
<td>657</td>
<td>0.14</td>
<td>y</td>
<td>H</td>
<td>5</td>
<td>this paper</td>
</tr>
<tr>
<td>DL Cas</td>
<td>684</td>
<td>0.35</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>AX Cir</td>
<td>6532</td>
<td>0.19</td>
<td>y</td>
<td>H</td>
<td>5</td>
<td>this paper</td>
</tr>
<tr>
<td>SU Cyg</td>
<td>549</td>
<td>0.34</td>
<td>y</td>
<td>I</td>
<td>1</td>
<td>Evans and Bolton, 1990</td>
</tr>
<tr>
<td>V1334 Cyg</td>
<td>1937</td>
<td>0.20</td>
<td>y</td>
<td>?</td>
<td>2</td>
<td>Evans 2000</td>
</tr>
<tr>
<td>Z Lac</td>
<td>351</td>
<td>0.01</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>S Mus</td>
<td>505</td>
<td>0.08</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>AW Per</td>
<td>13100</td>
<td>0.55</td>
<td>y</td>
<td>I</td>
<td>1</td>
<td>Evans, et al 2000</td>
</tr>
<tr>
<td>S Sge</td>
<td>676</td>
<td>0.23</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>W Sgr</td>
<td>1780</td>
<td>0.52</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>V 350 Sgr</td>
<td>1108</td>
<td>0.27</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>V636 Sco</td>
<td>1318</td>
<td>0.26</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>α UMi</td>
<td>19969</td>
<td>0.66</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>U Vul</td>
<td>2510</td>
<td>0.58</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>0 IUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>this paper</td>
</tr>
<tr>
<td>BY Cas</td>
<td>563</td>
<td>0.22</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>VZ Cyg</td>
<td>725</td>
<td>0.05</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
<tr>
<td>MW Cyg</td>
<td>441</td>
<td>0.04</td>
<td>y</td>
<td>H</td>
<td>1</td>
<td>this paper</td>
</tr>
</tbody>
</table>

Cepheid Multiplicity

• At least 44% of well-studied Cepheid binaries are triples

• Over estimate: highest mass secondaries are the most likely to be studied

• Under estimate: not a full census of distant companions

• Under estimate: only 8 of 18 systems have high resolution spectra of companions
More?

• What about low mass companions?

• No full amplitude Cepheid has been detected in X-rays (only maybe Polaris)

• Cepheid companions must themselves be very young stars
X-rays: Alp Per (ROSAT)

• Randich, et al. 1996
Low Mass Companions

- Young cool companions would be picked up
- Conversely if there are no X-ray sources, there are no companions
- Similar arguments hold for B stars
Summary

• High fraction of triples among well studied Cepheid binaries

• Combining ground + UV + X-ray hard to hide companions over very large mass range