Is the efficiency of magnetic braking limited by polar spots?

Aibéo, Alexandre^{*,1,2}; Ferreira, Miguel^{1,3}; Lima, João^{1,4}

¹ Centro de Astrofísica da Universidade do Porto, Portugal;
² Escola Superior de Tecnologia de Viseu, Portugal;

- ³ Universidade dos Açores, Portugal;
- ⁴ Dep. Matemática Aplicada FCUP, Portugal.

Centro de Astrofísica da Universidade do Porto

*e-mail: aaibeo@infante.ipv.pt

Introduction

• The angular momentum evolution of cool stars is dictated by the interaction of the stellar magnetic field with the outgoing wind

- The existence of late-type, very rapid rotators in young main sequence clusters indicates a saturation in the angular momentum loss rate
- Several mechanisms have been proposed, such as:
 - Saturation of the dynamo
 - Decrease of the fraction of open magnetic flux
 - Polar magnetic activity inhibiting angular momentum loss.
- Existing qualitative models of wind braking do not take into account the variation with latitude of some important physical quantities

• Use of a specific analytical 2-D model to address the question of how the change of the magnetic field distribution at the surface affects the angular momentum loss.

The model

• Analytical steady state 2-D model describing an axisymmetric helicoidal magnetized outflow originated by a rotating central object (Lima *et al.*, 2001)

$$B_r(\theta) = B_0 \sqrt{1 + \mu \sin^{2\varepsilon} \theta}$$

$$-\dot{J} = \lambda r_0^3 B_0^2 \int_0^{\pi/2} \sin^{\varepsilon+2} \theta \sqrt{1 + \mu \sin^{2\varepsilon} \theta} d\theta$$

$$B_0 = \frac{F_0}{2\pi r_0^2 \int_0^{\pi/2} \sqrt{1 + \mu \sin^{2\varepsilon} \theta} \sin \theta d\theta}$$

 $\dot{m}(\theta) = \rho_0 V_0 r_0^2 \sqrt{(1 + \mu \sin^{2\varepsilon} \theta)(1 + \delta \sin^{2\varepsilon} \theta)}$

The model

$$B_r(\theta) = B_0 \sqrt{1 + \mu \sin^{2\varepsilon} \theta}$$

Fig. 1: Different profiles for the radial component of the magnetic field. a) variation with ϵ ; b) variation with μ

Understanding the results of the model

- For a fixed value of μ :
- As ϵ increases
 - the angular momentum loss decreases
 - the field becomes less concentrated at the poles
 - the angular momentum loss per unit mass turns higher at the equator than at intermediate/larger latitudes.
 - however, the mass efflux diminishes
 - > The overall effect is a reduction of the braking.
- For a fixed value of ϵ :
- As $|\mu|$ increases
 - the field becomes more concentrated at the poles
 - *B*₀ also increases
 - however the integration term goes the opposite way.

 \succ The angular momentum loss can evolve distinctly, depending on which effect dominates.

Understanding the results of the model

Fig. 2: Total angular momentum loss variations as a function of field concentration towards the pole, τ , for different sets of ε and μ .

Understanding the results of the model

Young and rapidly rotating stars show near rigid body rotation profiles with a slightly faster equator (Cameron & Donati, 2002).

- Small values of ε and δ should be evaluated.
- The total angular momentum loss is an increasing function of $|\mu|$. Although there is a decrease of the mass loss rate, it is compensated by an increase of the angular momentum loss per unit mass.
- The higher the polar concentration of the magnetic field, the more efficient is magnetic braking.

On the other hand, for larger values of ε

- The angular momentum loss first increases and afterwards decreases with growing $|\mu|$.
- The surface rotation is larger at lower/intermediate latitudes.
- As $|\mu|$ increases, the field becomes more concentrated at latitudes where the rotation is small leading to an effective decrease in braking efficiency.

Discussion

• We show that there are several relevant factors to have into account other than the radial field distribution

• In all acceptable solutions, a higher polar field concentration leads to larger braking rates than a smoother field distribution, contrary to what has been suggested.

• Still there are important limitations to the model and further research is required to determine whether our results are a consequence of the particular models considered or can be regarded as a general feature.